ELF>Ћ@ @8 @ttq^q^TT=MM=MM888$$Ptd| | QtdRtd=MMGNU-qpݹ@ BE|qXG~x2"     +) -Y  9  {n *  p  [P< J3 rt  r  |  j SX x "]B P 3E  0qL /O 8 [ I] [ }  L &    g D ~    ;  6mU/  F= m \v   * 7Pc $?  b D B  EA 'K , k    , dU  ` k9F"/a    x   h  62 __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibmpdec.so.2libpthread.so.0libc.so.6PyExc_ArithmeticErrorPyUnicode_Comparempd_iscanonicalPyMem_Malloc_PyUnicode_ToDecimalDigitmpd_qsqrtPyUnicode_AsUTF8AndSizempd_qsetprec_Py_TrueStructmpd_qsetemaxmpd_iszero__strcat_chkmpd_qshiftPyExc_RuntimeErrorPyObject_Freempd_freempd_qround_to_intxsnprintfPyObject_CallFunctionPyList_Sizempd_qseteminPyUnicode_FromFormat_Py_NoneStructmpd_arith_sign_Py_ascii_whitespacePyFloat_Typempd_geteminmpd_qnext_minusmpd_qminmpd_qdivintmpd_set_flagsmpd_qlnmpd_compare_total_magmpd_qmin_magmpd_isnormalmemcpyPyDict_SetItemStringmpd_isdynamic_dataPyContextVar_Setmpd_lsnprint_signalsPyDict_GetItemWithErrorPy_BuildValuePyObject_HashNotImplementedmpd_qcopy_negatempd_validate_lconvPyUnicode_CompareWithASCIIStringPyExc_OverflowErrormpd_qmax_magPyExc_KeyErrorPyErr_SetStringPyUnicode_FromStringPyDict_SetItemPyComplex_TypePyLong_FromLongPyErr_OccurredPyBaseObject_TypePyModule_AddStringConstantmpd_qexpmpd_qlogbmbstowcs_PyObject_Newmpd_qfmampd_qminusmpd_qmulmpd_qnext_plusmpd_getprecmpd_qfinalizePyUnicode_FromWideCharmpd_parse_fmt_str__stack_chk_failmpd_qxor_Py_NotImplementedStructmpd_set_positivePyObject_GenericSetAttrPyArg_ParseTupleAndKeywordsmpd_set_signmpd_round_stringPyObject_CallFunctionObjArgsPyObject_IsInstancempd_isspecialPyObject_GetAttrStringmpd_setspecialmpd_isfinitempd_qcmpPyDict_SizePyList_AsTuplePyContextVar_Newmpd_qremmpd_qsset_ssizempd_etopmpd_qcomparempd_isqnanmpd_qcopy_signmpd_qncopympd_issubnormalmpd_qplusPyMem_Reallocmpd_qcopympd_qsetclampPyModule_AddObjectPyLong_Typempd_to_sci_sizempd_qrem_nearmpd_clear_flagsPyMem_Freempd_getroundPyImport_ImportModulePyObject_IsTruempd_qdivPyDict_NewPyTuple_Packmpd_seterrorPyErr_Clearmpd_qsetroundmpd_mallocfuncPyExc_ValueErrormpd_maxcontextmpd_qinvertmpd_signPyList_Appendmpd_isnan_PyUnicode_ReadyPyExc_TypeError_Py_FalseStructPyList_GetItemPyComplex_FromDoublesPyType_ReadyPyList_NewPyObject_CallMethodPyUnicode_InternFromStringPyFloat_AsDoublePyUnicode_DecodeUTF8mpd_qrotatempd_to_eng_sizempd_qabs__snprintf_chkmpd_qreducePyTuple_TypePyUnicode_Newmpd_qexport_u32mpd_qdivmodmpd_setdigitsPyExc_AttributeErrorPyErr_Formatmpd_qround_to_intPyObject_CallObject_PyLong_GCDPyBool_FromLongPyTuple_Sizempd_callocfuncstrcmpPyType_GenericNewmpd_qsubmpd_versionmpd_qpowmodmpd_traphandlermpd_getemax_PyLong_NewPyComplex_AsCComplexmpd_qformat_specmpd_qcopy_absmpd_isnegativePyType_IsSubtypempd_isinfinitempd_qscalebmpd_qmaxmpd_qset_ssizePyErr_NoMemorympd_setminallocPyModule_AddIntConstantPyLong_FromUnsignedLongPyObject_GenericGetAttrmpd_qormpd_issignedPyModule_Create2mpd_qset_stringmpd_classPyLong_FromSsize_tmpd_qpowmpd_qsetstatusmpd_etinyPyLong_AsSsize_tPyContextVar_Getmpd_qnext_towardmpd_qget_ssizempd_adjexpPyUnicode_AsUTF8Stringmpd_same_quantummpd_reallocfuncmpd_callocfunc_emmpd_ispositivempd_qnewPyLong_AsLongmpd_qquantizempd_delPyErr_SetObjectPyDict_GetItemStringPyType_Typempd_compare_totalmpd_qcompare_signalmpd_qlog10mpd_qandmpd_qset_uintPyFloat_FromDoublePyExc_ZeroDivisionErrorPyArg_ParseTuplempd_issnanPyTuple_NewPyFloat_FromStringmpd_to_scimpd_qadd_PyUnicode_IsWhitespacempd_qsettrapsPyErr_NewExceptionmpd_qimport_u32mpd_getclampPyInit__decimal_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.2.5GLIBC_2.3.4s ii  ui  ti  MM@UU`WE@W (8V`hӣHG@LȱХ '( L0JH,PLXIp1xK0J6KC?ȲBв BHKpI@H*Xs`Nh)x@sRP(rU'r`ȳ%س r[$qfp#`q p(!8q@kH@"Xp`zhx ppo`oȴشopn n (p8 n@H Xm`hpxm@ m-lȵ ص`l2` lk (`8`k@HXk`h`xjj@i*ȶPضh30`f9p f =(8`e@CHЦXd`Hhx`dNd[ceȷط@cq bxb (@8 b@HXa`hx`aa`ȸQ``p` (8_@HX`_`h`x_^ `^ȹPع^ ]@] %(8\@7HX\`Ahx@\M \Xp[dȺ0غ`[k[xZ (8@Z@H`@XZ`hxY@Ȼػ`YhXW@HhpNȼ@ؼRPUp [(8 @fHX@`phxz`Ƚ`ؽ` ( 8 @-HX`h`x2@ȾPؾ`n 9(08@NHX `[hxe qȿؿ@P @ (8@xHX`hкx`Qp`Hp ( 8 @HX`hx`p p```%P`7  k( 8 ~@AHX}`Mh`x }X|d`zx0yЪ`w@u (08t@HXs`hЗЗ P"p +(0@5H+`?hK`x@vp00 {@rP}s;}V]f o0x`h (@H`h6.G?YQkc{s (P8Pp@`@Ph8P@x00KY@ HNXpF@ 8P,Hp|p00@`'h6p1x,?Hk6 {(Y0G@8PXp6x6 <(@<H`<h<<<<< <(B0@P`p<<<< <(@<H`<h<<<N6NOOOO O,(O30O>8OC@OHHOIPONXOg`OmhOnpOpxOsOxO|OOOOOOOOOOOOOOXDpwwPwE`QQP P(P0P8P@PHPPPXP `P hP pP xP PPPPPPPPPPPPPP P!P"Q#Q$Q%Q& Q'(Q(0Q)8Q*@Q+HQ-PQ.XQ/`Q0hQ1pQ4xQ5Q6Q7Q8Q9Q:Q;Q<Q=Q?Q@QAQBQFQGQJQKRLRMRORP RQ(RR0RS8RT@RUHRVPRWXRX`RYhRZpR[xR\R]R^R_R`RaRbRcRdReRfRhRiRjRkRlRoSqSrStSu Sv(Sw0Sy8Sz@S{HS}PS~XS`ShSpSxSSSSSSSSSSSSSSSSSTTTT T(T0T8T@THTPTXT`ThTpTxTTTTTTTTTTTTTTTTTUUUU U(U0U8U@UHUPUXU`UhUpUxUUUUUUUUUUUUHHmHtH5%@%h%h%h%h%h%h%h%hp%h`%h P%h @%h 0%h %zh %rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h %h!%h"%h#%h$%h%%h&%h'p%h(`%h)P%h*@%h+0%h, %zh-%rh.%jh/%bh0%Zh1%Rh2%Jh3%Bh4%:h5%2h6%*h7p%"h8`%h9P%h:@% h;0%h< %h=%h>%h?%h@%hA%hB%hC%hD%hE%hF%hGp%hH`%hIP%hJ@%hK0%hL %zhM%rhN%jhO%bhP%ZhQ%RhR%JhS%BhT%:hU%2hV%*hWp%"hX`%hYP%hZ@% h[0%h\ %h]%h^%h_%h`%ha%hb%hc%hd%he%hf%hgp%hh`%hiP%hj@%hk0%hl %zhm%rhn%jho%bhp%Zhq%Rhr%Jhs%Bht%:hu%2hv%*hwp%"hx`%hyP%hz@% h{0%h| %h}%h~%h%h%h%h%h%h%h%h%hp%h`%hP%h@%h0%h %zh%rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%"h`%hP%h@% h0%h %h%h%h%h%h%h%h%h%h%h%hp%h`%hP%h@%h0%h %zh%rh%jh%bh%Zh%Rh%Jh%Bh%:h%2h%*hp%bf%*f%2f1 HJLH5TH811< H+H5XU1H8 13=H+u LkHAU0Hmt#E1"?I,$uM\$LE1AS0?HEHE1P0>H+u LkHAU0Hmt#E1AI,$uM\$LE1AS0@HEHE1P0@H+u LkHAU0Hmt#E1CI,$uM\$LE1AS0BHEHE1P0BHmu HMHQ0I,$t1,EH+uHSH1R0EIt$L1V0EHmu HMHQ0I,$t1GH+uHSH1R0}GIt$L1V0kGHmu HMHQ0I,$t1IH+uHSH1R0IIt$L1V0IH+u LkHAU0Hmt#E1/LI,$uM\$LE1AS0LHEHE1P0LHmu HEHP0I,$u I\$LS0E1&NHmu HEHP0I,$u I\$LS0E1 PH{HQH{HQ1QHSHR0$RH{HSH{HS1SHSHR0cSHmt1eTH+uLKH1AQ0MTLUH1AR0;TH+t.1UHmuHuH1V0UHSHR0ULCH1AP0lUH|$H/t1 H+uHKH1Q0 HwV0 H|$H/t1A H+uHKH1Q0* HwV0 HLWHAR0tWH+tH1ZWHLCHAP0H1@WH+uLKHAQ0H1%WuHH5/QH81WH{uHHkWH@H[WHSHHD$R0H\$XHHLGAP0XHSHHD$R0H\$vYHHLGAP0ZHHLGAP0ZHHLGAP0[HHLGAP0n\HHLGAP0]HSHHD$R0H\$^H+`LKH1AQ07_Il$L1U0%_L]HAS0`Hmu LUHAR0I,$tImr`I]LS01^M\$LAS0INLQ0cMHmt`I,$u M\$LAS0MdI/dI_LE1S0DbHEHP0I,$jdIl$LE1U0bLUHAR01HSHD$HR0HD$LEHD$HAP0HD$H|$(H/uH_S0H|$ H/HWR01H|$(H/HOQ01H|$(H/u LgAT$0H|$ H/t5H+HCHP01mLKHD$HAQ0HD$SHoU0Hmu HMHQ0I,$t1dH+uHSH1R0dIt$L1V0dHmu HMHQ0I,$t1egH+uHSH1R0NgIt$L1V08HtH.8H/H=-8HtH8H/H=7HtH7H/H=7HtH7H/H=7HtH7H/H=7HtH7H/nMt ImE1ȢHcSHLx5H1H+tDE11LSHAR0鯟E11E111~HSHR0Il$XHSHE11R0VM|$LAW0ǜLsHAV0鬜LmHAU0钜E1L[HAS0E1QE1E1HwV0LEHAP0LKHAQ0MT$LAR0 L_AS0!LgAT$04LwAV0HLAW0\HGP0qHOQ0Hmu LmHAU0I,$u ID$LP0E111E1=Hmu HMHQ0E111 LMHAQ0cL@HAP0)HsHV0鵙1E13MT$LAR04ImLE1U0麠H{HHtH/uLGAP0H{L@H[A HHH H.HH>HHNHگHImti1KMMHD$LAQ0I.HD$,MVHD$LAR0HD$I.u M^LAS0ImuImLU01MeLAT$01֡9H11mME1MMLAQ0H1@M\$LAS0LUHAR0;H‰H颡H yH5RJH9bbHfH5_J1H:E1H1H)&H5GH GH8t)LOIL@EDPLDPLEH LHPH=DJ1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$HHCHP0H=gH5GE1H?EHnH=;H5LJE1H?OH+ALCHAP01HH H5JH9{HWR0Vu=H=ìH5FH?1}1vHD$HCHP0HD$陣H91VH91IH91<HPHPHR0HPHR0%H+HCHt1H+uHCH1P0HKH1Q0ߣLH5II81oH ΫH5IH91R1J1CHt$HHt$AHHD$(Ht$H‰HQH{lF19ATUH-C#SHGD HHu7H H}t9Deu*HdHuHhyH u HSHR01 HzH[]A\ýTH תH5IH9HVH H5IH9HVL H5^FI9n(LgH5JI:P LIH5II;2[]A\HH^1H+t 712HCHP0H+t 1dHCHP0HuHV0HmLEHAP0H H5IH9ȵ龵H xH5iIH9aIuLV0ԸL% H|$A$H#aHOImMELAP0逸ImIMLQ0锻ImLU0酻Lt$ LLAT$ 齹HH5BH;1ʹ1ùHH5vHH8n(HsH1V0鍹IHM}t-E1RH=?H5BE1H?4ImuM]LAS0I,$uMD$LE1AP0HYLQI,$uH@I,$t E1нMT$LAR01H=0& HHHx111E1CS~w8A^MIIM9uH+t1L[H1AS0yvXLL$LL$@@uLLL$`0MLL$AFH+uHKH1Q0H=?@MAF U6uCHUH 11H57HRH9`H+LkH1AU0r1tMD$LAP01 H=$D$藰HHt.1HxHL$IU t$LϰKH+t1>12LkH1AU0 H+t1YHCH1P0H102tHL$HPHR0HL$HH5E1H8X1Hm0LUH1AR0LGAP0H|$ H/uL_AS0H|$H/H_S0H|$ H/HG1P0ytvHL$ULGAP0H|$ H/uL_AS0H|$H/HoU0H|$ H/H_S01HPHR0HL$HpH5D1H8G|t'HL$)HmLUH1AR0H#H5|D1H8LGAP0mH|$ H/uL_AS0H|$H/H_S0hH|$ H/|HG1P0KHPHR0HL$$tHHL$H|$ H/uL_AS0H|$H/tw1_HmuLUH1AR0FHIH5C1H8 )LGAP0H|$ H/uHG1P0HPHR0HL$;H_S0pt'HL$|HmJLUH1AR0 HH5C1H8H|$ H/uL_AS0H|$H/H_S0H|$ H/HG1P0LGAP0uHPHR0HL$t'HL$#HmLUH1AR0HH5VB1H8H|$ H/uL_AS0H|$H/H_S0gH|$ H/HG1P0JLGAP0HPHR0HL$}H|$ H/t1FLGHD$AP0HD$/HwHD$V0HD$ HmHHPHR0HL$rHyH5H9^tHL$KLOAQ01H۠H54AH81H|$ H/td1HmuLMH1AQ0LGAP0HOQ0eH|$ H/uLWAR0H|$H/uL_AS0_H_1S0QHPHR0HL$HyH5H9t HL$oHH5_@1H8H|$H/uLWAR0H<$H/t:1LOAQ0LGAP0H|$H/uH_1S0L_AS0HPHR0HL$HyH5UH9t HL$HJH5?1H8!FH|$H/uLWAR0H<$H/t:12LOAQ0%LGAP0 H|$H/uH_1S0L_AS0HPHR0HL$VHyH5H9B+t HL$/HH5>1H8eHHHQ0HD$1ZH{H9H{H0n1<uH/H5>1H:HD$HHHQ0HD$~uHH5D>H:1yHD$ZHHHQ019H+uLCH1AP0! HH5=1H:`HHHQ01H+uLCH1AP0SH1H5=1H:HHHQ0HD$1 H1H suHH59=H:1HD$HHHQ0HD$O 1h HHX uHH5<H:^12 HD$ LGAP0 H|$(H/ LO1AQ0 HHHQ0HL$ H+ HCH1P0m LOAQ0- H|$(H/uHWR0H|$ H/tZH|$H/ HwV0( Iu,HH5<1H: LW1AR0 HL$ HOQ0t'HL$ Hmk LUH1AR0, HGH5;1H8 H|$ H/uL_AS0H|$H/ H_S0 H|$ H/ HG1P0 LGAP0 HPHR0HL$ H|$ H/uL_AS0H|$H/1 t0HL$ HmuLUH1AR0 LOAQ0 H\H5:1H83 LGAP0V H|$ H/uHG1P0b HPHR0HL$ H_S0B t'HL$ Hm LUH1AR0f HəH5":1H8I LGAP0 H|$ H/uL_AS0H|$H/= H_S0 H|$ H/" HG1P0 HPHR0HL$) t'HL$v HmB LUH1AR0 HH5i91H8 LGAP0 H|$ H/uL_AS0H|$H/ H_S0 H|$ H/ HG1P0 HPHR0HL$ t'HL$ Hm LUH1AR0 HWH581H8. LGAP0a H|$ H/uL_AS0H|$H/ H_S0\ H|$ H/p HG1P0? HPHR0HL$w Xt'HL$ HmLUH1AR0SHH571H8u6LGAP0H|$ H/uL_AS0H|$H/*H_S0 H|$ H/HG1P0 HPHR0HL$ tvHL$kLGAP0HPHR0HL$JH|$ H/uL_AS0H|$H/HoU0H|$ H/H_S01HH561H8mt'HL$?Hm LUH1AR0HIH561H8 LGAP0H|$ H/uL_AS0H|$H/H_S0~H|$ H/HG1P0aHPHR0HL$HHHQ01H+uLCH1AP0HH551H:\HHHQ0[1H+uLCH1AP0/H-H551H:[HHHQ01%H+uLCH1AP0 lHՔH5.51H:HHHQ0k1H+uLCH1AP0?H}H541H:TkHHHQ015H+uLCH1AP0H%H5~41H:HHHQ0{1|gHH5>41H:HHHQ0+1i<HH531H:|?H|$H/uHoU0H|$H/uH_S0H|$Ht H/E1oH|$H/uLWAR0H|$H/uHWR0Ld$@H@HP01Ht$HLt21Ht$HLu>H|$H/uHOQ0Ld$Ld$HOQ0HGP0UH;-ML$HD$LAQ0HD$HOQ07H|$(H/uHGP0H|$ H/u LgAT$0Hm1LH|$(H/uHoU0H|$ H/uHwV01!H|$(H/uHOQ0HD$ HD$(LUHD$HAR0HD$H@HP0HUHR01HOQ0H|$H/uLWAR0H|$H/tW1H|$H/u LgAT$0Hl$xHl$nHmuLMH1AQ0UH@HP0L_AS09HOQ0H|$H/uLWAR0H|$H/tW1H|$H/u LgAT$0Hl$Hl$HmuLMH1AQ0H@HP0 L_AS0LgAT$0H@HP0H|$H/uLWAR0H|$H/t1BL_AS05Hmt1H@HP0HUH1R0Hmt1BH@HP0HUH1R0"H=jEHHp H=ŏH5F01H?nH@HP0$1XHD$HHHQ0HD$L dH501I9KL-WH5 0I}/{D$%L(H5!0I: 1H@HP01HL$8HT$0H5M!HrH|$0HWFHt$(eIHFLl$(Mqa1K1MLIHLx L|$XHHHtLH ILL$`1 11THD$fHL$IJ1H H5e.H91H@HP0vI,$HD$ID$t1It$LV0HD$Ml$L1AU0I,$u I\$LS0HmLUH1AR0黮H\$鿯L%SH5.I<$;1铮It$LV08HKHQ0H\$}1аHPHHD$R0HD$駰I,$u I\$LS0Im1鹱LCH1AP0駱ImLU0L5H5,I>HEHP0s1]1MD$LAP0EImIuLV0鬲MML1AQ0ImtLE1 E1IH+u L[HAS0I.uInLE1U0ճLCHAP0ųMULE1AR0鲳ID$LP0IH+u HkHU0ImtJE1LCHAP0ݵID$LP02E1ŵImuM]LE1AS0髵MeLE1AT$0闵1H+t1ܷHEHP0HsH1V0鼷H{Ho1H{H_,1HCHP0H{HH{HH H|$11 HEHP0zL%H5&,I<$}1AHD$Ld$ HPHR0HD$魽LIH+AJE1HIHtHL1H+IImIELP0LHeH+I1IIE1I^LS0`H+APE1E1RIuLV0邿E1.IELP0pIE1bE1$H+u LsHAV0wE1E1IL$LQ0zLI1@1 HCHP01~HH5@)H81IWLR0L|$0I,$;M\$LAS0*H+uHSH1R0>HmuLEH1AP0%vsHt$LL$蓿Ht$LL$@@uvHt$LL$=V0IHt$LL$AD$1:B<診1-LJA8@]B<L|$0A$ I2E1HBHHT$P0HT$E1ATIUSHH7HHLytiHs Hk H{L\tOHs@Hk@H^L?t2Hs`Hk`HAL"tH HuHu#HEHE[]A\fDAU1IHATH5z USH(HL$HT$#H\$L%HCL9Hl$HH}H9HEHuH{u+H$HH+t+Hmt@H([]A\A]H9HH+uLKHD$HAQ0HmHD$uLUHD$HAR0HD$LHHStmHLL^HHHl$H}L9/H5贿HutIHLH= HHEH HRH51H9賿1HH=DŽHV1H5H?芿H+LCHAP01|fAU1IHATH5USH(HL$HT$D$ ZH\$L%HCL9u}Hl$HH}H9HE胎IHIMHUHsHxLD$ mH+ Hmt$ L蜎yH(L[]A\A]LH;JHSHLL蔓HH(Hl$H}L9u]HEH=ɍIHGIMHUHsHxLD$ 購H+tjHmtVt$ LN'H5葽uHut:HLH=sHHm6LUHAR0LKHAQ0H=HV1H5H?zH+LCHE1AP0H ~HR1E1H5fH9>H]`fDAU1IHATH5ZUSH(HL$HT$D$ gH\$L%HCL9u}Hl$HH}H9HECIHIMHUHsHxLD$ mH+ Hmt$ L\yH(L[]A\A]LHJHSHLLTHH(Hl$H}L9u]HEH=艋IHTIMHUHsHxLD$ 賷H+tjHmtVt$ L誋N4H5VQuHut:HLH=3讐HHm6LUHAR0LKHAQ0H=wHV1H5bH?:H+LCHE1AP0H >HR1E1H5&H9HjmfDAU1IHATH5USH(HL$HT$D$ 蠸tH\$L%LHCL9u}Hl$HH}H9HEIHIMHUHsHxLD$ }H+ Hmt$ LyH(L[]A\A]LH軹JHSHLLHH(Hl$H}L9u]HEH=nIIHaIMHUHsHxLD$ ÷H+tjHmtVt$ LjNAH5uHut:HLH=nHHm6LUHAR0LKHAQ0H=7~HV1H5"H?H+LCHE1AP0H }HR1E1H5H9辸HwzfDAU1IHATH5USH(HL$HT$D$ `Hl$H HEH9Ld$HEI|$H9iI$-HH"LPH@0fIMfoILP@HuHxP IT$LD$ H@X0ΰHmGI,$It$ L謇H(H[]A\A]HHK}HUIHLH褌HHaLd$I|$H9I$H=DHH,LKHC0fIMfo `LK@HuH{C IT$LD$ HCK0HmtbI,$tht$ LˆH5wreIt$t:LLH=OʋIH>6L]HAS0ID$LP0H={HV1H5~ H?VHmdLEH1AP0H Z{HR11H5C H9bHEff.fAU1IHATH5*USH(HL$HT$D$ 谳Hl$H\HEH9Ld$HEI|$H9iI$}HHLPH@0fIMfoLP@HuHxP IT$LD$ H@X0HmGI,$It$ LH(H[]A\A]HH蛴}HUIHLHHHaLd$I|$H9I$H=I蔳HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0HmtbI,$tht$ L醷H5³eIt$t:LLH=IH>6L]HAS0ID$LP0H=xHV1H5 H?観HmLEH1AP0H xHR11H5 H9kbHE頶鳶鵶ff.fAU1IHATH5zUSH(HL$HT$D$ Hl$HHEH9Ld$HEI|$H9iI$ͱHHRLPH@0fIMfoLP@HuHxP IT$LD$ H@X0辫HmGI,$It$ LLH(H[]A\A]HH}HUIHLHDHHaLd$I|$H9I$H=HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0ժHmtbI,$tht$ LkH5eIt$t:LLH=jIH>6L]HAS0ID$LP0H=3vHV1H5H?HmLEH1AP0H uHR11H5H9軰bHE8KMff.fAU1IHATH5USH(HL$HT$D$ PIH\$L%HCL9uyHl$HH}H9HEIHHL$ HUHsHx1H+Hmt$ LuH(L[]A\A]LHoFHSHLLȄHH$Hl$H}L9uYHEH="~IH:HL$ HUHsHx{H+tjHmtVt$ L"RH5ɮuHut:HLH=&HHq6LUHAR0LKHAQ0H=sHV1H5H?貮H+LCHE1AP0H sHR1E1H5H9vHTWff.AU1IHATH5 USHHHT$kHl$HHEH9L$$HEI|$H9I$IHMMHAE0ffo  IEIT$HuMM@I}AE AM0HmI,$HL[]A\A]HH HUHLHyHHL$$I|$H9u"I$H=IH63H5豬uIt$t=LLH= IHu=M\$LAS09LUHAR0H=qHV1H5H?薬Hm԰LEHE1AP0H qHR1E1H5H9YHE 鎰DAU1IHATH5z USHHHT$ Hl$HHEH9L$$HEI|$H9I$تIHMMHAE0ffo IEIT$HuMM@I}AE AM0HmI,$HL[]A\A]HHHUHLHiHHL$$I|$H9u"I$H=IH6NH5衪uIt$t=LLH=IHu=M\$LAS09LUHAR0H=oHV1H5H?膪HmLEHE1AP0H oHR1E1H5qH9IHE 驮DATIUH-SHHH~H9HAT$PHvH|$gH+HHoHLd$ϪHHt#@ @@/H{0HLH5}oH|$HH[]A\H2HCHLH~HHtAT$PHsH|$谦H+HͭHHLd$HHh@ @tH{0@HH nHPH511H9˨0fDATIUH-cSHHH~H9HAT$PHvH|$GH+HAH,HLd$_HHt#@ @H{0HL蔤H5 nH|$HH[]A\H§HCtzHLH}HHtAT$PHsH|$蔣H+HHyHLd$謨HHl@ F@5H{0DH lHPH511H9e:HpATIUHSHHH~D$ H9uH!HHHpH@0fHxHp@fo9HL$ HuH@IT$P X0Hmt$ LvHH[]A\HSHEHLH{HHMH=dHHHSHC0fHufo HS@HL$ IT$HCH{C K0YHmtCt$ LuGݪHEH kHPH511H9ԥLEHAP0顪鎪ATIUH-SSHHH~D$ H9uVHuHHHL$ IT$HsHx^H+t$ L8uHH[]A\HܤHCtlHLH9zHHH=tHHHL$ IT$HsHxΟH+t$ LtpƩH iHPH511H9荤HH阩ff.fAVAUATIUHSH HH~H9HD$ 9HHHpH@0fLhfoUHp@Lt$ LH@HuLP X0t$ LsԩIt$LLt$ LsHm+HH[]A\A]A^HBHEHLHxHHH=D$ KHHHSHC0fLkHS@Lt$ HuLfo WHCLC K0/t$ LrukIt$LL/t$ LrHHH/yH HEJH gHPH511H9苢[z[f.SH~HH5H9nH{_HgH[f.ATIUH-SHHH~H9u/HH~蕡uZHZgHH+UH[]A\H苡u`HCt0HLHvHHt8H{;tH@gHH fHPH511H9|HH뽐ATIUH-SH~HH9u+HH~iurHfHH+[]A\HӠuHCtRHLH4vHHt$H{uHHfHHHH/t>HH5lfHHHH eHPH511H9袠HDATIUH-3SHHH~H9u/HH~řuZHeHH+H[]A\Hu`HCt0HLHLuHHt8H{ktHeHH eHPH511H9ܟHH뽐ATIUH-sSH~HH9u+HH~urHdHH+>[]A\H3uHCtRHLHtHHt$H{蓖uHdHHHH/t>HH5dHHHH AdHPH5.11H9H驥DATIUH-SH~HH9u+HH~ɚurHdHH+q[]A\HSuHCtRHLHsHHt$H{suHcHHHH/t>HH5cHHHH acHPH5N11H9"HܤDATIUH-SH~HH9u+HH~yurH>cHH+[]A\HsuHCtRHLHrHHt$H{#uHbHHHH/t>HH5 cHHHH bHPH5n11H9BHDATIUH-SH~HH9u+HH~ trHbHH+ף[]A\H蓜uHCtRHLHqHHt$H{賕tHHbHHHH/t>HH5aHHHH aHPH511H9bHBDATL%UHSH~HL9uKHH{Hu赔uHzaHH+[]A\H5aHHHH/t~HL蓛uGHCt@HHLpHHtHuH{?uHaHHHHH `HPH511H9tmff.fATL%UHSHHH~L9u@HHuH{豗tH`HH+%H[]A\Hh`HL誚uHCtHHL pHHuHH _HPH511H9谚ff.AV1IHAUH5ATUSH HL$HT$D$LD$Y[Hl$HH}H9Ld$HEIT$H9@Ll$I$I}H9IEHHgHHH@0fHufo+HH@HxIMP IT$LL$H@MFX0 HmI,$ Imt$LiH H[]A\A]A^HaHE-HLHqnHH/Ld$IT$H92I$Ll$I}H9IEH=HHHCHC0fIMfo HC@HuH{C IT$LL$HCMFK0HmkI,$Imt$LjhH H[]A\A]A^fH5 AMMALLH=XmIHHmeI,$H1xff.@H5H著It$taLLH=nlIH]MELAP0It$LV0L\IQH51I:oNH=\HV1H5vH?NHm=LEH1AP0HUHR0H C\HPH5011H9xHETff.AWH AVAUIHHATH8USH0H<\HD$D$ H\$P1LL$ LD$(耍ZYHl$L=*HUL9]Ld$HEI|$H9Lt$I$I9=IHLXH@0fIMfoYLX@HuHxP IT$LD$H@X0HmI,$>t$LeH(L[]A\A]A^A_fI~L9IH=H蓔IHIWHAG0ffo-IW@INIT$IGHuIAg LL$MEAo0I.CHmEHuHV06fLH赔HMHLLjHHILd$I|$L9Lt$I$I9H=U蠓IHMWHAG0ffo IGIMIT$MW@HuIAG LD$AO0NfH5mIt$LLH=8iIHLt$I9>H=H5膓+I^LLH=`hIHMD$LAP0E1LXHV1H5I8eHmuLMHE1AQ0H=lXHQ1E1H5TH?,cHEKL->XHSH5+1I}Hm钚霚隚I/NMOLE1AQ0@AU1IHATH5USH(HL$HT$D$ 耐Hl$H,HEH9Ld$HEI|$H9mI$MHHQLPH@0fIMfoiLP@HuHxP IT$LD$ H@X0辐HmKI,$pt$ LaH(H[]A\A]HHkHUHLHfHHhLd$I|$H9I$H=dHH3LKHC0fIMfo LK@HuH{C IT$LD$ HCK0ՏHmtfI,$t$ L`H5莐aIt$t`LLH=keIH:\L]HAS0H UHR11H5H9}ID$LP0eH=UHV1H5tH?LHmiLEH1AP0[HE0CEfDAU1IHATH5JUSH(HL$HT$D$ ЍHHl$H|HEH9Ld$HEI|$H9iI$蝎HHLPH@0fIMfoLP@HuHxP IT$LD$ H@X0nHmGI,$It$ L_H(H[]A\A]HH軎}HUIHLHdHHaLd$I|$H9I$H=i贍HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0腆HmtbI,$tht$ L;^鵗H5eIt$t:LLH=:cIH>6L]HAS0ID$LP0H=SHV1H5H?ƍHm+LEH1AP0H RHR11H5H9苍bHEϖff.fAU1IHATH5USH(HL$HT$D$ Hl$HHEH9Ld$HEI|$H9iI$HHLPH@0fIMfo LP@HuHxP IT$LD$ H@X0HmGI,$It$ Ll\H(H[]A\A]HH }HUIHLHdaHHaLd$I|$H9I$H=HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK05HmtbI,$tht$ L[MH572eIt$t:LLH=`IH>6L]HAS0ID$LP0H=SPHV1H5>H?HmÔLEH1AP0H PHR11H5H9ۊbHEgz|ff.fAU1IHATH5USH(HL$HT$D$ pxHl$HHEH9Ld$HEI|$H9I$=HHLKHC0fIMfo YLK@HuH{C IT$LD$ HCK0HmI,$t$ LYCH(H[]A\A]HH[HUHLH^HHLd$I|$H9u"I$H= XHH/H5uIt$t=LLH=G^IHu=M\$LAS0$LUHAR0 H= NHV1H5H?ЈHmŒLEH1AP0H MHR11H5H9蕈HE遒H+wLkH1AU0DAU1IHATH5USH(HL$HT$D$ THl$HHEH9Ld$HEI|$H9iI$HHLPH@0fIMfo LP@HuHxP IT$LD$ H@X0HmGI,$It$ LlWH(H[]A\A]HH }HUIHLHd\HHaLd$I|$H9I$H=HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0~HmtbI,$tht$ LVH572eIt$t:LLH=[IH>6L]HAS0ID$LP0H=SKHV1H5>H?Hm7LEH1AP0H KHR11H5H9ۅbHEۏff.fAU1IHATH5USH(HL$HT$D$ pHl$HHEH9Ld$HEI|$H9I$=HHLKHC0fIMfo YLK@HuH{C IT$LD$ HCK0Hm I,$t$ LT>H(H[]A\A]HH[HUHLHYHHLd$I|$H9u"I$H= XHH风H5uIt$t-LLH=GYIHu-M\$LAS0$H=IHV1H5H?HmILEH1AP0LUHAR0H HHR11H5H9蕃HEH+LkH1AU0ٍDAU1IHATH5USH(HL$HT$D$ ȍHl$HHEH9Ld$HEI|$H9iI$HHiLPH@0fIMfo LP@HuHxP IT$LD$ H@X0~}HmGI,$It$ LlRH(H[]A\A]HH }HUIHLHdWHHaLd$I|$H9I$H=HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0|HmtbI,$tht$ LQ5H572eIt$t:LLH=VIH>6L]HAS0ID$LP0H=SFHV1H5>H?HmLEH1AP0H FHR11H5H9ۀbHEObdff.fAU1IHATH5USH(HL$HT$D$ p~`Hl$HHEH9Ld$HEI|$H9iI$=HHLPH@0fIMfoYLP@HuHxP IT$LD$ H@X0zHmGI,$It$ LOH(H[]A\A]HH[}HUIHLHTHHaLd$I|$H9I$H= T~HH,LKHC0fIMfo pLK@HuH{C IT$LD$ HCK0yHmtbI,$tht$ LN͉H5~eIt$t:LLH=_SIH>6L]HAS0ID$LP0H=CHV1H5H?f~HmCLEH1AP0H jCHR11H5SH9+~bHEff.fAU1IHATH5:USH(HL$HT$D$ {Hl$HlHEH9Ld$HEI|$H9iI$|HHLPH@0fIMfoLP@HuHxP IT$LD$ H@X0>uHmGI,$It$ L MH(H[]A\A]HH|}HUIHLHRHHaLd$I|$H9I$H=Y{HH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0UtHmtbI,$tht$ L+LeH5׿{eIt$t:LLH=*QIH>6L]HAS0ID$LP0H=@HV1H5H?{HmۆLEH1AP0H @HR11H5H9{{bHE钆锆ff.fAU1IHATH5USH(HL$HT$D$ yHl$HHEH9Ld$HEI|$H9iI$yHH1LPH@0fIMfoLP@HuHxP IT$LD$ H@X0tHmGI,$It$ L\JH(H[]A\A]HHy}HUIHLHTOHHaLd$I|$H9I$H=xHH,LKHC0fIMfo LK@HuH{C IT$LD$ HCK0sHmtbI,$tht$ L{IH5'"yeIt$t:LLH=zNIH>6L]HAS0ID$LP0H=C>HV1H5.H?yHmsLEH1AP0H >HR11H5H9xbHE*,ff.fAU1IHATH5USH(HL$HT$D$ `v(Hl$H HEH9Ld$HEI|$H9iI$-wHHɃLPH@0fIMfoILP@HuHxP IT$LD$ H@X0xHmGI,$It$ LGH(H[]A\A]HHKw}HUIHLHLHHaLd$I|$H9I$H=DvHH,LKHC0fIMfo `LK@HuH{C IT$LD$ HCK0wHmtbI,$tht$ LF镂H5wrveIt$t:LLH=OKIH>6L]HAS0ID$LP0H=;HV1H5~H?VvHm LEH1AP0H Z;HR11H5CH9vbHE鯁āff.fAU1IHATH5*USH(HL$HT$D$ sHl$H\HEH9Ld$HEI|$H9I$}tHHaLKHC0fIMfo LK@HuH{C IT$LD$ HCK0nHm I,$t$ LDH(H[]A\A]HHt/HUHLHIHHLd$I|$H9u"I$H=MsHHwH50+tuIt$t-LLH= IIHu-M\$LAS0$H=]9HV1H5HH? tHmLEH1AP0LUHAR0H+LkH1AU0H 8HR11H5H9sHEDAU1IHATH5USH(HL$HT$D$ `qHl$H HEH9Ld$HEI|$H9iI$-rHH=LPH@0fIMfoILP@HuHxP IT$LD$ H@X0qHmGI,$It$ LBH(H[]A\A]HHKr}HUIHLHGHHaLd$I|$H9I$H=DqHH,LKHC0fIMfo `LK@HuH{C IT$LD$ HCK0pHmtbI,$tht$ LA ~H5wrqeIt$t:LLH=OFIH>6L]HAS0ID$LP0H=6HV1H5~H?VqHm}LEH1AP0H Z6HR11H5CH9qbHE#}6}8}ff.fAU1IHATH5*USH(HL$HT$D$ n4}Hl$H\HEH9Ld$HEI|$H9I$}oHH|LKHC0fIMfo LK@HuH{C IT$LD$ HCK0NjHm I,$t$ L?>H(H[]A\A]HHoHUHLHDHHLd$I|$H9u"I$H=MnHH{H50+ouIt$t-LLH= DIHu-M\$LAS0$H=]4HV1H5HH? oHm{LEH1AP0LUHAR0H 4HR11H5H9nHEH+8{LkH1AU0!{DAU1IHATH5USH(HL$HT$D$ `l{Hl$H HEH9Ld$HEI|$H9I$-mHHzLKHC0fIMfo ILK@HuH{C IT$LD$ HCK0gHmJI,$.t$ L=JH(H[]A\A]fDHHEmHUHLHBHHLd$I|$H9u#I$H=BlHHyH5ٰluIt$t?LLH=0BIHu?H 2HR11H5H9lH=1HV1H5H?lHmTyLEH1AP0M\$LAS0LUHAR0HE yH+yLkH1AU0ff.ATIUHSH߯HH~D$ H9uHkHHxHpH@0fHxHp@fo)HL$ HuH@IT$P X0FbHmt$ L;HH[]A\HCkHEHLH@HH#xH= TjHHHSHC0fHufo pHS@HL$ IT$HCH{C K0aHmtFt$ L:GwH 0HPH511H9jHE\LEHAP0twawDATIUHSH?HH~D$ H9uHqiHHYwHpH@0fHxHp@foHL$ HuH@IT$P X0VcHmt$ L9HH[]A\HiHEHLH>HHvH=ihHHHSHC0fHufo HS@HL$ IT$HCH{C K0bHmtCt$ LF9GKvHEH c.HPH5P11H9$iLEHAP0vuATIUH-SHHH~D$ H9uVHa8HH2vHL$ IT$HsHx>eH+vt$ L8HH[]A\H,huyHCtrHLH=HHuH=7HHuHL$ IT$HsHxdH+ut$ L7tuHH -HPH511H9gFZuATIUH-sSHHH~D$ H9uVH17HHHuHL$ IT$HsHx>hH+4ut$ LX7HH[]A\HfuyHCtrHLH]<HHtH=ʪ6HHtHL$ IT$HsHxgH+tt$ L6ttHH +HPH5׼11H9fFptATIUH-CSHHH~D$ H9uVH6HH^tHL$ IT$HsHxcH+Jtt$ L(6HH[]A\HeuyHCtrHLH-;HHsH=u5HHsHL$ IT$HsHxcH+st$ L5tsHH *HPH511H9{eFsATIUH-SHHH~D$ H9uVH4HHtsHL$ IT$HsHxnaH+`st$ L4HH[]A\HduyHCtrHLH9HHsH=jE4HHrHL$ IT$HsHx`H+rt$ Ll4trHH )HPH5w11H9KdFrATIUH-SHHH~D$ H9uVH3HHrHL$ IT$HsHxn[H+rt$ L3HH[]A\HlcHCtlHLH8HHrH=63HHqHL$ IT$HsHxZH+qt$ L83pqH \(HPH5I11H9cHHqff.fATIUH-SHHH~D$ H9uVHa2HHqHL$ IT$HsHx~`H+qt$ L2HH[]A\H,bHCtlHLH7HHqH=1HHqHL$ IT$HsHx_H+qt$ L1ppH 'HPH5 11H9aHHpff.fATIUH-cSHHH~D$ H9uVH!1HHpHL$ IT$HsHxN[H+pt$ LH1HH[]A\H`uyHCtrHLHM6HH(pH=0HH pHL$ IT$HsHxZH+ot$ L0toHH %HPH5Ƕ11H9`FoATIUH-3SHHH~D$ H9uVH/HHoHL$ IT$HsHx.\H+ot$ L0HH[]A\H_uyHCtrHLH5HH>oH=e/HH oHL$ IT$HsHx[H+ ot$ L/toHH $HPH511H9k_FnATIUH-SHHH~D$ H9uVH.HHnHL$ IT$HsHxXH+nt$ L.HH[]A\H^uyHCtrHLH3HHTnH=Z5.HH6nHL$ IT$HsHxXH+"nt$ L\.tnHH z#HPH5g11H9;^FmSH1H H=ϨHT$YnHD$Ht H(tnHH0H [N~HtH(uInff.AWAVAUATUSHHGHD$HHH|$(foHfo ʻHt$ foݻH$L$HT$H=HL$HH$L1D$0L$8D$HHL$XH\$ D$`L$hD$xHD$( Ƅ$$$D$OX.H$H^H(kmL}LZL []IH]m ]HHqmHu HLl$HLLXHL$0HLH$MMH $XLLH^RlHCHRfo%IXLIL$)$MLLHH\H$MLHHKTLHTLIRuI݋D$I WlL ]H]LmHL[]A\A]A^A_ff.@Ll$HLHLWLT$0Ht$`L$HLMMLWLLHJQkHCHQfozIXLIL$)$LY_kLVuLLgSHHi/Ht$Ld$LeLl$MkHD$L \H\HD$zHtH(kL}LXeLXZIHjZHH kHu HLl$LHLfVLT$0H$L$AWAVI1AUATUSHHhH=qLl$0D$(LUkLd$0MI,$jI~H0H9HII9HL{MnLoXL$dXHT$(LLD$pSH+I.=>L%Ic,L1@cTHh[]A\A]A^A_@H5ytXEI~LLH=N-IHHI9tHLCMnLLD$WL$}WH|$HT$(LD$RH+I.M^HD$MK0I9LYIFL@D$fDH;=SDMA1AL$,LLH=o0IMHI9HHKHHMnHT$HL$VL$VH|$LHT$(D$QHt$H.I.'ff.@@HcRHh[]A\A]A^A_ff.AAAA븅뮋$ \$tt$(L&t1DEAw߃HHH5y4VI~H5H9VH5,LlOxLH5LMIHmLHH=ʙE+I/H$gH<$BL{L0TH5qLD$,qMHgLHHD$H=f*LD$II(XgMfLTIH#gH=+%HfLHD$SHD$LLM_IGIVLD$,LHHD$LL\$LL$UUHL$Ll$Ht$Li I.uIVHt$LHL$R0HL$Ht$LHL$Ht$lV|$,HT$HL$hHH9$L4$H9 L$1HLSD$HAR0D$ ML9Tf.f. zturNIHeAL$,LHH=ȗ-ImINIELP0?HHL4$/HvHL5I(tIHH(dLL$$GP$L$Hd#LAыD$Cwdf.AWAVAUATUSQH5H uhH=`HHLL LH>HH-7HMHLEI1H=xgNHHdHL%iH5^M\$`HH`HMkMM{(HY@L-0L5!L=H~HH'dI$H5 ZHÜHdHH=ܕHՖH.HHLcH= LcH=LcH=DLcH=hPHHxcH=`HH5f9HsfH=HH5HHUfH+HH H;t$DctHsLDk^H H;u1De(?IH^H=Åt?HH H;t$DctHsL$DR^H H;uHcU4}8HHuLMH HUAV1AUWDEPH=APLE DIMH HqIuH]I.t H[]A\A]A^]fDHcPBUHHSQBHHU^Hw ]P1Z[]H H5H8@ff.AUATUSHHGH5HH9*H;=!H;=~H;=yH;=tH;=oH;=jH9=e2EŅH5H߽EH5H߽DtjH5HDtkH5HDt_AL-KtHDDt#IIuH H5զH:z?H[]A\A]ý1ڽӽ̽ŽAVAUATUSHFHH5 HH9PH;+H;&H;H;H;H;H;HCAąH5HCH5H}CH5vHfCt\H5kHSCAL5.K4HE/Ct+IIuH" H5SH:=AH}DDEd[1[]A\A]A^AAAAE1AAff.SHHH~H5}H9\H;tYH;tPH;tGHH=H&>H+\H\H(ujHPHR0H HH[H1x_HHg\@,H=H=H+N\H>\H(u HHHQ0H4 HfDHSH9BHHu\H=1@HC@HL\H=̍1e@HCHHF\LMtFAo@HS@Hs,CAoH K AoP0LC(S0LBHpCPHCXH[H{H5 LK@LS(L[,MQLXCPHCX10HH[H=1?HC@Hy[H=1?HCHHs[H5ΌHoH{H mHH=TH;5_H=YoH;5dH=^TH;5iH=c9H;5nH=hH;5sH=mH;5xH=rH;5}H^tH H8H;pu@ZHWujHHHf.H~J~ZHOu'HpHHH)~HHHH)~d@HY~T@Hi~DH|$SH|$vSHHH;HHYHH9HGH{A?E1t HD[H=jH5H?K9ADSHHH;HHYH{*@t1H[HH5H88SHHH:HHtH{?t 1H[HD$hHH8HH7HHg8USHHH=zH|H;5zH=zaH95zH=zFH;5zH=z+H;5zH=zH;5zH=zH;5zH=zH;5zHztH H8H;puf.XuCH:x7HU u^ 1H[]ÐHzytff.fHyHy1!ˉfDHyd@HyTHT$jOHT$H=:H5'H?5KAWAVAUATIHHUSHXHjHD$H\$HH\$@H\$8H\$0H\$(H\$ H\$H\$P1HT$ RHHL$0QH Hl$@ULD$PAPLL$`AQLL$pLD$xe2H0( H|$HH9F6HHMt$L9Hl$@H9HuH5H9UH9-PH9-^H9- \H9-ZH9-H9-H9-H8AŅH5H8H5H8vH5Hz8tfH5Hg8AL=BK4HEC8aIIuH2H5cH; 3AMt$DDLE:YTH|$8H94HtHL9JH|$0H9z4HHL9H|$(H9J4H3H3H|$ AD$PH94H/AAIM9/L7'Ll$I9IE&L37HD$HE1E1H-uLL}9H}H;uH=uH9uH=uH9uH=uH;uH=uH;uH=u~H;uH=ucH;uL ut I I9EI;Auff.AAA IL;|$AaM|$DL/RRLl$I9LIu6L5IHE11HL8H} H9]tH=WtH9bt$H=\tH;gt9H=atH;lt.H=ftH9qtCH=ktH9vtHH=ptkH9{tH=\ttH H?MH;GufDG!HA L9AI|$D/P1HX[]A\A]A^A_ff.@H=sL s$@H=st@L s@L s@H= sD@H=s4@L s@L s@H= s@L s@H= sH|$8H9t250HHu1HHI|$`5H|$0H9t$/HwI|$H5yH|$(H9t/HHAD$PH|$ H9t}tWH;-=}tnH;-<}tUH 1AŅH f.AAE1Mt$AMt$AMt$AMt$HD$3/Ht$Hu(I|$0H=pH59H?Q+ jE.HuH,H5=H: +.HuHMt$OEHH5=H8*LLOooDGC.H9HrH H5H9k*%LlH5 I8M*LLANAOfATUSHtRHFIHHKH5mH^.tRH5NHK.t0HHL[]A\50HvH5H:)[]A\[HL]A\HN[HL]A\NfHtHH9u7[/Ht(HHHfo @0fH@HH@@ H0H10Huf.G( w,€u1!AUH=lATUSQoKH?JK_1LoM1 &HHH=kk2H=kkH=llH=ltslXH=lt]l&H=ltG#lH=%lt1L%l I I<$tA\$tIt$H*y;JH= ltL%lA\$u7I I<$uHL'HmIZ[]A\A]H It$H&*yIH5jH*IH5jH)IH5jH)IH5*kH)fIH5jH)JIH5jH).IDAVAUAATLgULSHH@D$+.HHIoCoK HLoS0Lt$HT$L)D$)T$0)L$ Dl$4$S(D$ C,рTMH|$H@1D$HD$g-IH&HH$IHHLl$HxJL:)H5LM~GDI~EtKI\$H^-uH2.H@L[]A\A]A^fH,uHI\$f.HtKGTMNHEuMt5CD M^L˅MtC|I^*Li@1^L(L "H5KI9%E1I!L5hGI>fGA^MvMt[1"IHtLL%g A\$uII I<$uL%h A\$uhI I<$uLL#ImGH,_It$L&yBGH=H5fH?6$.I AIt$L&yGH>HSA|.HFff.@AVAUATUSH@HFD$ GLl$HHIL)H>nH9H})HHFfC0HKHLcfo HCC K0IVHK@H(HAvHC0LLt$ HsH1$HC L*LLL;%T$ A*FDU(AAD M,EDL$ AEH@H[]A\A]A^ÐHڹHuTA~HC0H{HL#HC L)HT$ LL$T$ AjE1HIvMLLD$APA@(XZf.HCHL1HC0v#HC Lv)H10HH\MEE!L-eDՀYEI}3EAmMuMtc1IHtTL%d Al$uSI I<$uH=etL%eAl$uOI I<$uLL ImlDH+DDIt$L#y-DI QIt$L#Dff.AWAVAUL-kATUSHHBL9uHAHHD[]A\A]A^A_HALHIH<'AąuNHStLHLE1HHEAEt1H=vHRH5c}1H?9'H]AHoH -HHM[AWAVAUATUHSHHhH~HT$D$,H;=H$f.a#f(1ҸfT fV ȍf.Df.D$fTȍf.HpIH/C1HpI,$IIL$LQ0MCImI} 1pIH CH I,$IHBHpHT$HHt$HImIMELAP0MB,&HHB&IHBHl$0Lt$,H#LHHLHIwLx&HHMHLD#t$,H|$&]BML$MHHLLLL$@%H&L&t$,H|$At$HL$H"L)It$ HhL[]A\A]A^A_o!D$HxAH%oIHcA1HoI/Iu M_LAS0M;AImI} 1nIHEAH-I,$II@HT$IGHHHD$LLHH=VcD$HH3=IuHxHT$t$L_H+=HsH1V0H=mHH7H6IHgH7I,$I=MHH=bD$HH=HxLHL$IUt$LMLW &HD$M}.HH?LUHAR0M?^IHE>HL1H+I?Imx>I.>fE1HC LHUH+Hu.HsH=LV0I9LLCHA@H>LH?HL1H)`IHt> IHk=H/LH3MI,$Hv>Im>Huu/H=H5ciE1H?h"ML$LAQ0-H[H5 iE1H:9L[HAS0Mt Im)=Mf"IH=H(=H=EHHtnHSHC0fLcfo _HS@HHT$HCLC K0t)LtAntIvL/y6H=7L57tAnu;I I>uLLI,$57H+7HCH1P0IvLy6|$6BH Ӿ9E1Ʌ|$JL.|$M6BN_tK~A$III9u|$6>II9&Ht$LL$&Ht$LL$|$6BD$<.LLֽA8H|$Le|.w~L A9LŃHt$LL$TLL$Ht$Ht$LL$0ILL$Ht$AD$Ht$Ht$z|$5BHT$>2HT$Ht4H*2HH=7H 7HH9uUH H[]A\dHH1H(1HH=7Hx7IH9tqHff.fH111HHH+Iu@HsH=$LF0I9u&H{LKHLA@H H[]A\HALBH=)=H"=H9tHHt H=<H5<H)HHH?HHtHHtfD=<u/UH=Ht H=]h<]{f.HHHHt$HD$HDHHHHff.SH~HH55H9HH[ff.@ATL%5UHSHHH~L9u'HHuH{1H+tAHH[]A\LSuHCt.HHLHHu2HSHD$HR0HD$H HP1H5pGH9HH1[]A\ff.fUHHHSHHt$D$*aH=4HH>HD$H{HT$HpH|$H/tt$HHH[]HWR0ِUHHHSHHt$D$H=4HHHD$H{HT$HpH|$H/tt$HHH[]HWR0ِUHSHbH&HuHH1H=bGH+ H[]AT1IHUH5 OSH@HL$0HT$8D$HT$8Ht$(LHT$0Ht$ LH=3HHH=2ȾHHHD$ HT$(H{HuLL$MD$HHHRH|$(H/uHOQ0H|$ H/uHwV0t$Lþu61HH=DFH[HmH+H@[]A\1Hmu LUHAR0H+uL[HAS01fUHHHSHHt$D$jyH=1ƽHHVHD$H{HL$HUHpoH|$H/Ut$H*HH[]fSHHSHH(HHߺH[ۿff.SHHHH(HHߺH[雿ff.USHHRHGHh yt HS8HlXH[]SHH"HHH+uHCD$HP0D$f.K{Hf[uD$HD$PHH5yCH8ZfHHHHHG(Hff.fSH_H1u HH[ff.QH]HHZÐPHZff.QHFt H{HZH.HZQHt HKHZHHZQHHHZÐQHfHHZÐQHHװHZÐQH&u H{HZHHZQHmHHZÐAWAVAUATIUHoSHHHH-HWIHH#HeHH=JHFHDjIMeH{x1pHHiH=4E1LHL1jHILIm7Ht HmWMt I,$6HH[]A\A]A^A_HCHHIH1LHHHyH|$HHE1L;t$}$C470Hc4HJDIH=3E1LHL1HILLLA I|$ IH=GIH1H=G1|HHfDUHSHH\$HuHNH߾HHRHZH+Hu HCHP0HH[]ff.fHGHtHHétzPHH.1Zf.AWAVAUATUSHH(HH{HGHHHk(D$HM-T$H<>HE1qHD$HH5H{ HJH6HHHLpHLIH%HHL$L1HF`HL93M4E1HuIHJ|LOAHH rEu 0IAFII9|A|$u)AELL$I~1LEHH+H(L[]A\A]A^A_H5EHtTH5YFHAŅH5BHAŅuNH|$H5DBHD$H|$H5DAHD$XLH5$HI8E1?|$A0IOHuHSHR0 H|$H57DHD$LkH5GI:LH+LE1H-;H5$GE1H}LH5GI;HH5GE1H;`ff.fSHHHtH/tH{Ht H/H[HGP0S1HH=&~HtSPHxHs @0PP[ff.QHw1负HtH(HHZSHwH1聟HtH(HCH[ATH )yUSHHW,H$H#xIS(yH H)LxH8{8HcS4HK HsDKPHLCP1ATUWH=oFrH H[]A\fPHZHff.fPHfZHff.fATUSHG HH uP1L%I<$t[It$HHt HuA l$I VHH֧H5AH:[]A\H H5uFH9`ff.SH,HH9FH#t[ÉH{1:ff.SHX,HH9F\Ht[ÉH{1ff.BUSQHNH; +u0LGLNEE9AÃA8^HHZ[] tFHH>uHU9@ƃ@@8uĀnHHff.UHH=$SHD$ cHHtHT$ HuHxD$ HH[]@UHH=E$SHD$ HHtHT$ HuHxD$ HH[]@UH=#SQѯHHt1H@@Hk1HH HC0HC HHZ[]ÐUHHH=#SHD$ иHIHuHxHHT$ t$ H覯u HH[]H+HCH1P0SH=)1H@,H=*HHOHH(u HPHR0H[ÐU1HH (SHHH6H8HLL$LD$(D$ H\$HL$H9cHD$HH(WHL$Ht$ HԶHL$HT$(Ht$賶H=4"HHZHt$H|$ LD$ HL$HVHwHIHxH|$ H/H|$H/uLOAQ0t$ H|$ H8H[]1HyH5 H9i%ff.U1HH c'SHHH=5H8HBLL$LD$(D$ H\$HL$H9HD$HH(HL$Ht$ HtHL$HT$(Ht$SH= 诬HHeHt$H|$ LD$ HL$HVHwHIHxH|$ H/ H|$H/uLOAQ0t$ H|$説u H8H[]H+u LSHAR01HyH5H9ff.U1HH %SHHH3H8HҡLL$LD$(D$ H\$HL$H9HD$HH(nHL$Ht$ HHL$HT$(Ht$H=d?HHHt$H|$ LD$ HL$HVHwHIHxH|$ H/H|$H/uLOAQ0t$ H|$:#H8H[]HyH5=H9.1ff.U1HH S$SHHHm2H8HrLL$LD$(D$ H\$~HL$H93HD$H]H(HL$Ht$ H褲4HL$HT$(Ht$胲]H=ߩHHHt$H|$ LD$ HL$HVHwHIHx H|$ H/H|$H/uLOAQ0t$ H|$کH8H[]HyH5H9K)ff.@U1HH "SHHH 1H8HLL$LD$(D$ H\$^ HL$H9ӽHD$HH(HL$Ht$ HDHL$HT$(Ht$#H=HHkHt$H|$ LD$ HL$HVHwHIHxzH|$ H/~H|$H/t t$ H|$肨H8H[]LOAQ0HyH5{H9,1fU1HH S!SHHH/H8HLL$LD$(D$ H\$ HL$H9sHD$HH(tHL$Ht$ HHL$HT$(Ht$ï H=DHHHt$H|$ LD$ HL$HVHwHIHxH|$ H/H|$H/t t$ H|$"1H8H[]LOAQ0HyH5H9,1fU1HH SHHHM.H8HRLL$LD$(H\$fHL$H9HD$HEH(HL$Ht$ H茮HL$HT$(Ht$kHL$H|$ HqH<HHH|$ H/H|$H/H8[]@U1HH SHHHM-H8HRLL$LD$(D$ H\$HL$H9HD$HH([HL$Ht$ H脭HL$HT$(Ht$cH=迤HHHt$H|$ HL$ HVHwHx3H|$ H/H|$H/st$ H|$ǤDH8H[]DU1HH cSHHH,H(H"LL$LD$H\$vHL$H9 HD$HH(HL$Ht$H\HL$HT$H=H=虣HH5H $Ht$HxHQHvSH|$H/=H<$H/"H(H[]ff.U1HH 3SHHH +H(HLL$LD$H\$fHL$H9۷HD$H^H(HL$Ht$HL5HL$HT$H-7H=艢HHH $Ht$HxHQHv3H|$H/H<$H/H(H[]ff.AT1H USHHHH)HH-LD$Hl$Y%HD$H9HxH5XH9(PPHsHHHHL$$HHt#@ @H{0HLHH5H<$HH[]A\JHD$HH(bHD$iU1HH SHHH(HHLD$H\$[tZHD$H9t0HxH5bH9vH}HpHDH[]訵HD$HtH(-HD$1fU1HH SSHHH^(HHbLD$D$H\$'HD$H9tgHxH5H9(H=F!HHHt$HxHL$HVHujt$H|$LHH[]ŴHD$HH(ff.U1HH cSHHH~'HHLD$D$H\$HD$H9tgHxH5H9H=fAHHiHt$HxHL$HVHut$H|$l?HH[]HD$HH(ff.U1H vSHHHH&HH-LD$Hl$$HD$H9t;HxH5H9HpH{hHiHH[]9HD$HH(HD$f.U1H SHHHH%HH-LD$Hl$KHD$H9t;HxH5NH9HpH{HyHH[]色HD$HwH(YHD$f.UH HHSHH>%HPHDHD$D$H\$P1LL$@LD$HZYcHL$H9HD$HBH(QHL$Ht$(HlHL$HT$8Ht$ KHL$HT$0Ht$*H=膜HHHt$H|$ LL$ LD$(LT$HNHWIpHxMBH|$(H/H|$ H/t2H|$H/uHoU0t$ H|$nxHHH[]L_AS0HyH5gH9H|$(H/H|$ H/1U1HH SHHH}#H8HLL$LD$(D$ H\$ HL$H9CHD$HH(HL$Ht$ H责HL$HT$(Ht$蓣H=HHJHt$H|$ LD$ HL$HVHwHIHxJH|$ H/]H|$H/t t$ H|$H8H[]LOAQ0HyH5 H9,w1fU1HH SHHH"H8H"LL$LD$(D$ H\$nHL$H9HD$HH(SHL$Ht$ HTHL$HT$(Ht$3H= 菙HHVHt$H|$ LD$ HL$HVHwHIHxH|$ H/H|$H/dt$ H|$莙5H8H[]HyH5 H92U1HH SHHH H8HҎLL$LD$(D$ H\$HL$H9蓭HD$HH(HL$Ht$ HHL$HT$(Ht$kH=d ?HH%Ht$H|$ LD$ HL$HVHwHIHxZH|$ H/H|$H/uLOAQ0t$ H|$:}H8H[]HyH5= H9.G1ff.U1HH SHHHmH8HrLL$LD$(D$ H\$达HL$H93HD$HH(!HL$Ht$ H褟HL$HT$(Ht$胟H= ߖHH~Ht$H|$ LD$ HL$HVHwHIHxH|$ H/9H|$H/uLOAQ0t$ H|$ږH8H[]HyH5H9.1ff.U1HH SHHH H8HLL$LD$(D$ H\$^HL$H9ӪHD$HH(zHL$Ht$ HDHL$HT$(Ht$#H= HHHt$H|$ LD$ HL$HVHwHIHx躽H|$ H/H|$H/uLOAQ0t$ H|$z/H8H[]HyH5}H9.1ff.U1HH SHHHH8HLL$LD$(D$ H\$HL$H9sHD$HH(HL$Ht$ HHL$HT$(Ht$ÜvH=DHH0Ht$H|$ LD$ HL$HVHwHIHxZH|$ H/H|$H/t=t$ H|$"H8H[]HyH5%H96Z1LOAQ0fU1HH  SHHHMH8HRLL$LD$(D$ H\$螺HL$H9HD$HH(HL$Ht$ H脛HL$HT$(Ht$cH=迒HHcHt$H|$ LD$ HL$HVHwHIHxH|$ H/ H|$H/uLOAQ0t$ H|$躒u H8H[]H+u LSHAR01HyH5H9ff.U1HH SHHHH8HLL$LD$(D$ H\$.HL$H9裦HD$HH(XHL$Ht$ HHL$HT$(Ht$H=tOHHHt$H|$ LD$ HL$HVHwHIHx誻H|$ H/pH|$H/uLOAQ0t$ H|$J H8H[]HyH5MH9.1ff.U1HH SHHH~HHLD$D$H\$ӷKHD$H9upLHD$H.H(H=]8HH Ht$HxHL$HVHut$H|$cHH[]HxH5fH9tff.U1HH #SHHHHHLD$D$H\$HD$H9tgHxH5H9H=aHHHt$HxHL$HVHu:t$H|$茏cHH[]HD$H?H(&ff.U1HH 3SHHHHH„LD$D$H\$;HD$H9tgHxH5H9HHtmH?I9tfIIt$H}Ll$(HKHT$ LD$ 蔯t$ HXGHmu LEH1AP0.Hx1IfDAT1IH UHHHSHPHwLL$LD$D$ H\$H\$ǨHD$H9:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)valid values for clamp are 0 or 1valid range for Emax is [0, MAX_EMAX]valid range for Emin is [MIN_EMIN, 0]valid range for prec is [1, MAX_PREC]argument must be a signal dictinternal error in context_setstatus_dictinternal error in context_settraps_dictinternal error in context_settraps_listinternal error in context_setstatus_listcontext attributes cannot be deletedinternal error in flags_as_exceptioncannot convert Infinity to integerargument must be a tuple or listoptional argument must be a contextoptional arg must be an integerinternal error in PyDec_ToIntegralExactoptional argument must be a dictformat specification exceeds internal limits of _decimalinternal error in dec_mpd_qquantizecannot convert signaling NaN to floatinternal error in PyDec_ToIntegralValuecannot convert NaN to integer ratiocannot convert Infinity to integer ratio??;| n @ G i ` 4Pɛ@YќP)Vԝ, l>`.(AhTgz(p'͠4ء $htܢdPT(pD<,tt3@yK`ק8cLӨH  4!!Ix""$#L##ϭL$߭x$$$X%%L&'3<'WP'#(ɰ8(հ(K(Z(i))) *D*C+,@,p, -f|-o-.X.ʳ.l//B0041Էd11102Np222t03-l334t@4044ݿ55H555C06*p666a07p777(08p898809Ap999@::;X;;c;(<<=J==>>?dh??R@P@@@=lAABfhBX @ t ` d@T0@Pd0TP,t<p|P0 <Hp  8  (x0h"$'X)@,-@/0 1T3@45,6t7 9P: : >L!0E"pN"N"N#O8# O`#@O%Pl%P&P`&`R&Th(T(0V)W)PX *XX*Y|*Y*Z+0Z(+PZ@+pZX+Zp+Z+\,pg,-h-ph.j/m/p/pq40pv0}x1@}>>>$? |??@ d@Ѝ@A0AA $B 0 @0 PD ` P@pt \ P!!""" |#P#p##$4$`$0$P$$%'0'p'(L(@(p(0)@*`*+@$,T,--0.0l.0H1@12D2p2о203D3334T444`5@\555`D666p7D70778`D8@8 89D999:T::$;l;;p;<<`<===zRx $ FJ w?;*3$"DX\ +D fzRx  0 (0BDA ABzRx  $"<!A_zRx  q*84BJH A(DPx (A ABBI zRx P$+8:BJH A(DP (D ABBA tM8H:BJH A(DP (D ABBA ߌM8:BJH A(DP (D ABBA ܌M8tBJH A(DP (D ABBA dٌH88BJH A(DP (D ABBA ьH84BJH A(DP (D ABBA ɌH82BJH A(DP (D ABBA TM8( BJH A(D@ (D ABBA zRx @$+8$ BJH A(D@ (D ABBA ty+0jBDH G0  DABA zRx 0$<-0PiBDH G0  DABA l!-<tBHD G0d  DABE g CAB0BDD K0  DABA Ƌ80 ,3BDH G0_  DABA <F(hdAJI0l DAA zRx 0 5(AJI0l DAA `5@BBB D(D0K@ 0D(A BBBA zRx @(NX 6AtHvS0BDH G0s  AABA (BDH s ABA  Z084BDH G0s  AABA T%(BDH s ABA (LBDH s ABA ъ( BDH s ABA ((@ BDH s ABA hw( ,BHD w ABA J0 BHD G0w  AABA X TBJI A(A0DP 0D(A BBBH  0D(A BBBC zRx P(P BIB K(H0A8DhZpRhA` 8D0A(B BBBC zRx `($( đ@ADD0tAAى 0d ȑ^BIH D`  AABA zRx `$8 pBJH A(DP (D ABBA H H8 BJH A(DP (D ABBA  H8l 0BJH A(DP (D ABBA  H8 KBJH A(DP (D ABBA 8 ,8 BJH A(DP (D ABBA  ȉH8\ KBJH A(DP (D ABBA  ,8 BJH A(DP (D ABBA ( H8 PBJH A(DP (D ABBA x H8LBJH A(DP (D ABBA  H8BJH A(DP (D ABBA  H8pBJH A(DP (D ABBA h |H8<KBJH A(DP (D ABBA  t,8 BJH A(DP (D ABBA PH80 KBJH A(DP (D ABBA XH,8,0RBJH A(DP (D ABBG $,0|@BDD K0  DABA  80BDD K0  DABA  8$ AJI0tDA A0H/BDH G0_  DABA d F0/BDH G0_  DABA  F0/BDH G0_  DABA  F0 l/BDH G0_  DABA < F0hT3BDH G0_  DABA  F0L3BDH G0_  DABA  F0D/BDH G0_  DABA F0@,/BDH G0_  DABA \߈F0/BDH G0_  DABA ݈F$OAHA BAA$5AG \LzRx   !D CA P 5AG \L\߈!D CA @bAI0A AA zRx 0 $/AAH [DAL4BBB B(A0A8G2 8D0A(B BBBP $zRx ,q 8pAD C EE IDCdLBBG B(A0C8G 8A0A(B BBBE  8A0A(B BBBO $zRx ,tȉA\H #2 BBB B(A0A8A@ 8D0A(B BBBA zRx @(ɇFH(D<+QAG)fl+++ j+AT$A^A]zRx `AJx(AY A L(AY A LA]{A]_A]C<(AY A L\A]DP4*:BBB A(D0D@HDPAXM`Q@[ 0A(A BBBA  + HBBB B(D0E8GP 8D0A(B BBBA zRx P(n(*EAGA ^ AAA zRx   8x*xBBA A(D00 (C ABBA < +BBB A(A0O (A BBBA zRx 0($cAID0ODA0$PGGMGDGDGDGDGDGDn(6gNH@CBBB B(A0A8G` 8D0A(B BBBA 8Ai E h 5As +AG t AA Av$(Af P(Afj+OH A LE=DhBMA JbDAAPG AABzRx $:$0|,D  K x H _ A  l-kAJ  DA | ڇ (.MAJ e AA  ‡5 @.aAJ a AA .dAJ a AA <$.qADG  AAC L AAB DGAdXAJ|`AJ.#D^/DM/DM/DM/DM( mBAH ^AB(8 .AAD0 AAB ,d BAA  ABA   BAi A pr) 4BAi A k)h!/ BBB B(J0A8DuHMMGGSG 8A0A(B BBBP $zRx ,ZL!<:BAA O ABE W DBA A GBE AGB AAB("@DAA C AAA \"0:VK{ A $x"LAKD0vDAj$"LAKD0vDALL$"OAHA BAA8#9;\IA A(C0> (F ABBA zRx 0$҄O@#;BBE E(D0Gp 0D(A BBBC zRx p(P$(>BBB A(A0Dp 0D(A BBBB fxQLxApńHl$@BBB I(A0A8D@Z 8D0A(B BBBA L$4ABBB B(A0D8G4 8D0A(B BBBA (%pAND0 DAA &X\%EBDB O(A0A8D`k 8D0A(B BBBK hWpFhA`%OAM$h%K5D i A %V(,&UAMQP DAA zRx P (&bAMQP DAA `z(&ĉUAMQP DAA ֆ('QAMQP DAA O(H'WAMQP  DAA  Ç('$WAMQP  DAA `<$'DAMQPAA((+AMQPDA/$D(AMQ@DAzRx @ $(AMQ@DA\,0(BJA T0  DABA #i( )<AMQ0Q AAA "ɊD(`)AMQ0 DAA "͊X()<AMQ0 DAA <#X()ܓAJT0` AAA |#[( *LAJT0` AAA #[4`*ANNhZpRhA`$ DAA zRx ` (*WAMQP  DAA (+4MAMQP DAA +(H+DUAMQP DAA  (+dUAMQP DAA `)(+UAMQP DAA (,WAMQP  DAA (H,ĜbAMQP DAA  (,UAMQP DAA `(,AMQ0 DAA d&iX(-AMQ0 DAA &X(H-TAMQ0 DAA &X(-AMQ0 DAA $'X(-AMQ0 DAA d'ɏX(.4AMQ0 DAA '@(H.AMQ0 DAA '@8.BED D(DP (D ABBA -я0.DNBDD DP  AABA zRx P$^0@/,BDD D@  DABA zRx @$0/BDD D@  DABA l&0/\BDD D@  DABA lO,804}BDA D0j DABP+w.,|0p}BDA D0j DAB+a.80jBBD D(Dk (D ABBA zRx (P041VBMN Dp  DABA zRx p$;L13BBB B(A0D8D 8D0A(B BBBA $zRx ,>8(2TBED A(DP (A ABBA 0jx2ԮP20?BIB J(H0D_RA^ 0D(A BBBB zRx (j 3tBbAI0A AA  @P3B0BBG D(A0D@ 0D(A BBBD P,@3EjBBB A(F0G@ 0D(A BBBA ,v@4GfBBB A(F0G@ 0D(A BBBA -x0X4IJBFA D0  DABA t/B404J9BCD D0  DABA /.404KBAA K0  DABA 0BL05M<BKB K(H0A8Dh 8D0A(B BBBA AX5PBBB A(E0G@0 0D(A BBBB K 0D(A BBBJ .ɑG(6UAFD0i DAA /В"LD68V BKB B(A0A8DI 8D0A(B BBBC @6aBAD I@O  DABA   DABA |)@Ucs hMMo` P@c'< o0'oon%oYM6FVfvƀր&6FVfvƁց&6FVfvƂւ&6FVfvƃփ&6FVfvƄք&6FVfvƅօ&6FVfvƆֆ&6FVfvƇև&6FVfvƈֈ&6FVfvƉ։&6FVfvƊ֊&6FVfvUlocalcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. C decimal arithmetic moduleContext(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. `WE@WVӣHG@LХ' LJ,LI1K0J6KC?B BHKpI*sN)@sRP(rU'r`% r[$qfp#`qp!qk@"pz ppo`oopn np n mpm@ m-l `l2` lk``kk`jj@i*Ph30`f9p f=`eCЦdH`dNd[ce@cq bxb@ ba`aa`Q``p`_`_`_^ `^P^ ]@]%\7\A@\M \Xp[d0`[k[xZ@Z`@ZY@`YhXWN@RPUp[ f@pz```  -`2@P`n90N [e q@P @xк`Qp`Hp  `p p```%P`7 k  ~A}M` }X|d`zx0yЪ`w@u0tsЗЗ P"p+05+?K`x@vp00 {r}s;}V]c fc oXLIx8>6.G?@YQ kc@{sPDp@`@ P`@00KY@ NpFh@P,p|00@'61,?Hk6{YG866<<<<<<<<<B<<<<<<<<<<N6e2a92d1ac0e8f6f40218e171977003ddb9a1f3.debug8>.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.dynamic.got.plt.data.bss.gnu_debuglink 88$o``4( 0 8on%n%Eo0'0'PT''<^Bcc@hc nwЋЋR}hh  | 7M=M=M=rN>P@UE ~  44