// // SPDX-License-Identifier: BSD-3-Clause // Copyright Contributors to the OpenEXR Project. // // clang-format off #ifndef _PyImathMatrix_h_ #define _PyImathMatrix_h_ #include #include #include #include #include "PyImath.h" namespace PyImath { template boost::python::class_ > register_Matrix22(); template boost::python::class_ > register_Matrix33(); template boost::python::class_ > register_Matrix44(); template boost::python::class_ > > register_M44Array(); template boost::python::class_ > > register_M33Array(); template boost::python::class_ > > register_M22Array(); typedef FixedArray > M22fArray; typedef FixedArray > M22dArray; typedef FixedArray > M33fArray; typedef FixedArray > M33dArray; typedef FixedArray > M44fArray; typedef FixedArray > M44dArray; // // Other code in the Zeno code base assumes the existance of a class with the // same name as the Imath class, and with static functions wrap() and // convert() to produce a PyImath object from an Imath object and vice-versa, // respectively. The class Boost generates from the Imath class does not // have these properties, so we define a companion class here. // The template argument, T, is the element type (e.g.,float, double). template class M22 { public: static PyObject * wrap (const IMATH_NAMESPACE::Matrix22 &m); static int convert (PyObject *p, IMATH_NAMESPACE::Matrix22 *m); }; template class M33 { public: static PyObject * wrap (const IMATH_NAMESPACE::Matrix33 &m); static int convert (PyObject *p, IMATH_NAMESPACE::Matrix33 *m); }; template class M44 { public: static PyObject * wrap (const IMATH_NAMESPACE::Matrix44 &m); static int convert (PyObject *p, IMATH_NAMESPACE::Matrix44 *m); }; template PyObject * M22::wrap (const IMATH_NAMESPACE::Matrix22 &m) { typename boost::python::return_by_value::apply < IMATH_NAMESPACE::Matrix22 >::type converter; PyObject *p = converter (m); return p; } template PyObject * M33::wrap (const IMATH_NAMESPACE::Matrix33 &m) { typename boost::python::return_by_value::apply < IMATH_NAMESPACE::Matrix33 >::type converter; PyObject *p = converter (m); return p; } template PyObject * M44::wrap (const IMATH_NAMESPACE::Matrix44 &m) { typename boost::python::return_by_value::apply < IMATH_NAMESPACE::Matrix44 >::type converter; PyObject *p = converter (m); return p; } template int M22::convert (PyObject *p, IMATH_NAMESPACE::Matrix22 *m) { boost::python::extract extractorMf (p); if (extractorMf.check()) { IMATH_NAMESPACE::M22f e = extractorMf(); m->setValue (e); return 1; } boost::python::extract extractorMd (p); if (extractorMd.check()) { IMATH_NAMESPACE::M22d e = extractorMd(); m->setValue (e); return 1; } return 0; } template int M33::convert (PyObject *p, IMATH_NAMESPACE::Matrix33 *m) { boost::python::extract extractorMf (p); if (extractorMf.check()) { IMATH_NAMESPACE::M33f e = extractorMf(); m->setValue (e); return 1; } boost::python::extract extractorMd (p); if (extractorMd.check()) { IMATH_NAMESPACE::M33d e = extractorMd(); m->setValue (e); return 1; } return 0; } template int M44::convert (PyObject *p, IMATH_NAMESPACE::Matrix44 *m) { boost::python::extract extractorMf (p); if (extractorMf.check()) { IMATH_NAMESPACE::M44f e = extractorMf(); m->setValue (e); return 1; } boost::python::extract extractorMd (p); if (extractorMd.check()) { IMATH_NAMESPACE::M44d e = extractorMd(); m->setValue (e); return 1; } return 0; } template boost::python::tuple jacobiEigensolve(const Matrix& m) { typedef typename Matrix::BaseType T; typedef typename Matrix::BaseVecType Vec; // For the C++ version, we just assume that the passed-in matrix is // symmetric, but we assume that many of our script users are less // sophisticated and might get tripped up by this. Also, the cost // of doing this check is likely miniscule compared to the Pythonic // overhead. // Give a fairly generous tolerance to account for possible epsilon drift: const int d = Matrix::dimensions(); const T tol = std::sqrt(std::numeric_limits::epsilon()); for (int i = 0; i < d; ++i) { for (int j = i+1; j < d; ++j) { const T Aij = m[i][j], Aji = m[j][i]; if (std::abs(Aij - Aji) >= tol){ throw std::invalid_argument ("Symmetric eigensolve requires a symmetric matrix (matrix[i][j] == matrix[j][i])."); } } } Matrix tmp = m; Matrix Q; Vec S; IMATH_NAMESPACE::jacobiEigenSolver (tmp, S, Q); return boost::python::make_tuple (Q, S); } typedef M22 M22f; typedef M22 M22d; typedef M33 M33f; typedef M33 M33d; typedef M44 M44f; typedef M44 M44d; } #endif