#! /usr/bin/python3 # -*- coding: utf-8 -*- # ****************************************************************************** # $Id: gdal2tiles.py d712a530aa1b0dabf9717dd935996dd7b9fd8ced 2020-11-15 15:12:13 +0100 Even Rouault $ # # Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/) # Support: BRGM (http://www.brgm.fr) # Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory. # - generate Google Earth metadata (KML SuperOverlay) # - generate simple HTML viewer based on Google Maps and OpenLayers # - support of global tiles (Spherical Mercator) for compatibility # with interactive web maps a la Google Maps # Author: Klokan Petr Pridal, klokan at klokan dot cz # Web: http://www.klokan.cz/projects/gdal2tiles/ # GUI: http://www.maptiler.org/ # ############################################################################### # Copyright (c) 2008, Klokan Petr Pridal # Copyright (c) 2010-2013, Even Rouault # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ****************************************************************************** from __future__ import print_function, division import math from multiprocessing import Pool from functools import partial import glob import json import os import tempfile import threading import shutil import sys from uuid import uuid4 from xml.etree import ElementTree from osgeo import gdal from osgeo import osr try: from PIL import Image import numpy import osgeo.gdal_array as gdalarray numpy_available = True except ImportError: # 'antialias' resampling is not available numpy_available = False __version__ = "$Id: gdal2tiles.py d712a530aa1b0dabf9717dd935996dd7b9fd8ced 2020-11-15 15:12:13 +0100 Even Rouault $" resampling_list = ( 'average', 'near', 'bilinear', 'cubic', 'cubicspline', 'lanczos', 'antialias', 'mode', 'max', 'min', 'med', 'q1', 'q3') webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'mapml', 'none') class UnsupportedTileMatrixSet(Exception): pass class TileMatrixSet(object): def __init__(self): self.identifier = None self.srs = None self.topleft_x = None self.topleft_y = None self.matrix_width = None # at zoom 0 self.matrix_height = None # at zoom 0 self.tile_size = None self.resolution = None # at zoom 0 self.level_count = None def GeorefCoordToTileCoord(self, x, y, z, overriden_tile_size): res = self.resolution * self.tile_size / overriden_tile_size / (2**z) tx = int((x - self.topleft_x) / (res * overriden_tile_size)) # In default mode, we use a bottom-y origin ty = int((y - (self.topleft_y - self.matrix_height * self.tile_size * self.resolution)) / (res * overriden_tile_size)) return tx, ty def ZoomForPixelSize(self, pixelSize, overriden_tile_size): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(self.level_count): res = self.resolution * self.tile_size / overriden_tile_size / (2**i) if pixelSize > res: return max(0, i - 1) # We don't want to scale up return self.level_count - 1 def PixelsToMeters(self, px, py, zoom, overriden_tile_size): "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" res = self.resolution * self.tile_size / overriden_tile_size / (2**zoom) mx = px * res + self.topleft_x my = py * res + (self.topleft_y - self.matrix_height * self.tile_size * self.resolution) return mx, my def TileBounds(self, tx, ty, zoom, overriden_tile_size): "Returns bounds of the given tile in georef coordinates" minx, miny = self.PixelsToMeters(tx * overriden_tile_size, ty * overriden_tile_size, zoom, overriden_tile_size) maxx, maxy = self.PixelsToMeters((tx + 1) * overriden_tile_size, (ty + 1) * overriden_tile_size, zoom, overriden_tile_size) return (minx, miny, maxx, maxy) @staticmethod def parse(j): assert 'identifier' in j assert 'supportedCRS' in j assert 'tileMatrix' in j assert isinstance(j['tileMatrix'], list) srs = osr.SpatialReference() assert srs.SetFromUserInput(str(j['supportedCRS'])) == 0 swapaxis = srs.EPSGTreatsAsLatLong() or srs.EPSGTreatsAsNorthingEasting() metersPerUnit = 1.0 if srs.IsProjected(): metersPerUnit = srs.GetLinearUnits() elif srs.IsGeographic(): metersPerUnit = srs.GetSemiMajor() * math.pi / 180; tms = TileMatrixSet() tms.srs = srs tms.identifier = str(j['identifier']) for i, tileMatrix in enumerate(j['tileMatrix']): assert 'topLeftCorner' in tileMatrix assert isinstance(tileMatrix['topLeftCorner'], list) topLeftCorner = tileMatrix['topLeftCorner'] assert len(topLeftCorner) == 2 assert 'scaleDenominator' in tileMatrix assert 'tileWidth' in tileMatrix assert 'tileHeight' in tileMatrix topleft_x = topLeftCorner[0] topleft_y = topLeftCorner[1] tileWidth = tileMatrix['tileWidth'] tileHeight = tileMatrix['tileHeight'] if tileWidth != tileHeight: raise UnsupportedTileMatrixSet('Only square tiles supported') # Convention in OGC TileMatrixSet definition. See gcore/tilematrixset.cpp resolution = tileMatrix['scaleDenominator'] * 0.28e-3 / metersPerUnit if swapaxis: topleft_x, topleft_y = topleft_y, topleft_x if i == 0: tms.topleft_x = topleft_x tms.topleft_y = topleft_y tms.resolution = resolution tms.tile_size = tileWidth assert 'matrixWidth' in tileMatrix assert 'matrixHeight' in tileMatrix tms.matrix_width = tileMatrix['matrixWidth'] tms.matrix_height = tileMatrix['matrixHeight'] else: if topleft_x != tms.topleft_x or topleft_y != tms.topleft_y: raise UnsupportedTileMatrixSet('All levels should have same origin') if abs(tms.resolution / (1 << i) - resolution) > 1e-8 * resolution: raise UnsupportedTileMatrixSet('Only resolutions varying as power-of-two supported') if tileWidth != tms.tile_size: raise UnsupportedTileMatrixSet('All levels should have same tile size') tms.level_count = len(j['tileMatrix']) return tms tmsMap = {} profile_list = ['mercator', 'geodetic', 'raster'] # Read additional tile matrix sets from GDAL data directory filename = gdal.FindFile('gdal', 'tms_MapML_APSTILE.json') if filename: dirname = os.path.dirname(filename) for tmsfilename in glob.glob(os.path.join(dirname, "tms_*.json")): data = open(tmsfilename, 'rb').read() try: j = json.loads(data.decode('utf-8')) except: j = None if j is None: print('Cannot parse ' + tmsfilename) continue try: tms = TileMatrixSet.parse(j) except UnsupportedTileMatrixSet: continue except: print('Cannot parse ' + tmsfilename) continue tmsMap[tms.identifier] = tms profile_list.append(tms.identifier) threadLocal = threading.local() # ============================================================================= # ============================================================================= # ============================================================================= __doc__globalmaptiles = """ globalmaptiles.py Global Map Tiles as defined in Tile Map Service (TMS) Profiles ============================================================== Functions necessary for generation of global tiles used on the web. It contains classes implementing coordinate conversions for: - GlobalMercator (based on EPSG:3857) for Google Maps, Yahoo Maps, Bing Maps compatible tiles - GlobalGeodetic (based on EPSG:4326) for OpenLayers Base Map and Google Earth compatible tiles More info at: http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation http://msdn.microsoft.com/en-us/library/bb259689.aspx http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates Created by Klokan Petr Pridal on 2008-07-03. Google Summer of Code 2008, project GDAL2Tiles for OSGEO. In case you use this class in your product, translate it to another language or find it useful for your project please let me know. My email: klokan at klokan dot cz. I would like to know where it was used. Class is available under the open-source GDAL license (www.gdal.org). """ MAXZOOMLEVEL = 32 class GlobalMercator(object): r""" TMS Global Mercator Profile --------------------------- Functions necessary for generation of tiles in Spherical Mercator projection, EPSG:3857. Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps, UK Ordnance Survey OpenSpace API, ... and you can overlay them on top of base maps of those web mapping applications. Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). What coordinate conversions do we need for TMS Global Mercator tiles:: LatLon <-> Meters <-> Pixels <-> Tile WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid lat/lon XY in meters XY pixels Z zoom XYZ from TMS EPSG:4326 EPSG:387 .----. --------- -- TMS / \ <-> | | <-> /----/ <-> Google \ / | | /--------/ QuadTree ----- --------- /------------/ KML, public WebMapService Web Clients TileMapService What is the coordinate extent of Earth in EPSG:3857? [-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244] Constant 20037508.342789244 comes from the circumference of the Earth in meters, which is 40 thousand kilometers, the coordinate origin is in the middle of extent. In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0 $ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857 Polar areas with abs(latitude) bigger then 85.05112878 are clipped off. What are zoom level constants (pixels/meter) for pyramid with EPSG:3857? whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile, every lower zoom level resolution is always divided by two initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062 What is the difference between TMS and Google Maps/QuadTree tile name convention? The tile raster itself is the same (equal extent, projection, pixel size), there is just different identification of the same raster tile. Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ. Google placed the origin [0,0] to the top-left corner, reference is XYZ. Microsoft is referencing tiles by a QuadTree name, defined on the website: http://msdn2.microsoft.com/en-us/library/bb259689.aspx The lat/lon coordinates are using WGS84 datum, yes? Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum. Well, the web clients like Google Maps are projecting those coordinates by Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if the were on the WGS84 ellipsoid. From MSDN documentation: To simplify the calculations, we use the spherical form of projection, not the ellipsoidal form. Since the projection is used only for map display, and not for displaying numeric coordinates, we don't need the extra precision of an ellipsoidal projection. The spherical projection causes approximately 0.33 percent scale distortion in the Y direction, which is not visually noticeable. How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4? You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform. All of the tools supports -t_srs 'epsg:3857'. For other GIS programs check the exact definition of the projection: More info at http://spatialreference.org/ref/user/google-projection/ The same projection is designated as EPSG:3857. WKT definition is in the official EPSG database. Proj4 Text: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs Human readable WKT format of EPSG:3857: PROJCS["Google Maps Global Mercator", GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433], AUTHORITY["EPSG","4326"]], PROJECTION["Mercator_1SP"], PARAMETER["central_meridian",0], PARAMETER["scale_factor",1], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["metre",1, AUTHORITY["EPSG","9001"]]] """ def __init__(self, tile_size=256): "Initialize the TMS Global Mercator pyramid" self.tile_size = tile_size self.initialResolution = 2 * math.pi * 6378137 / self.tile_size # 156543.03392804062 for tile_size 256 pixels self.originShift = 2 * math.pi * 6378137 / 2.0 # 20037508.342789244 def LatLonToMeters(self, lat, lon): "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857" mx = lon * self.originShift / 180.0 my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / (math.pi / 180.0) my = my * self.originShift / 180.0 return mx, my def MetersToLatLon(self, mx, my): "Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum" lon = (mx / self.originShift) * 180.0 lat = (my / self.originShift) * 180.0 lat = 180 / math.pi * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) return lat, lon def PixelsToMeters(self, px, py, zoom): "Converts pixel coordinates in given zoom level of pyramid to EPSG:3857" res = self.Resolution(zoom) mx = px * res - self.originShift my = py * res - self.originShift return mx, my def MetersToPixels(self, mx, my, zoom): "Converts EPSG:3857 to pyramid pixel coordinates in given zoom level" res = self.Resolution(zoom) px = (mx + self.originShift) / res py = (my + self.originShift) / res return px, py def PixelsToTile(self, px, py): "Returns a tile covering region in given pixel coordinates" tx = int(math.ceil(px / float(self.tile_size)) - 1) ty = int(math.ceil(py / float(self.tile_size)) - 1) return tx, ty def PixelsToRaster(self, px, py, zoom): "Move the origin of pixel coordinates to top-left corner" mapSize = self.tile_size << zoom return px, mapSize - py def MetersToTile(self, mx, my, zoom): "Returns tile for given mercator coordinates" px, py = self.MetersToPixels(mx, my, zoom) return self.PixelsToTile(px, py) def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile in EPSG:3857 coordinates" minx, miny = self.PixelsToMeters(tx * self.tile_size, ty * self.tile_size, zoom) maxx, maxy = self.PixelsToMeters((tx + 1) * self.tile_size, (ty + 1) * self.tile_size, zoom) return (minx, miny, maxx, maxy) def TileLatLonBounds(self, tx, ty, zoom): "Returns bounds of the given tile in latitude/longitude using WGS84 datum" bounds = self.TileBounds(tx, ty, zoom) minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1]) maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3]) return (minLat, minLon, maxLat, maxLon) def Resolution(self, zoom): "Resolution (meters/pixel) for given zoom level (measured at Equator)" # return (2 * math.pi * 6378137) / (self.tile_size * 2**zoom) return self.initialResolution / (2**zoom) def ZoomForPixelSize(self, pixelSize): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): return max(0, i - 1) # We don't want to scale up return MAXZOOMLEVEL - 1 def GoogleTile(self, tx, ty, zoom): "Converts TMS tile coordinates to Google Tile coordinates" # coordinate origin is moved from bottom-left to top-left corner of the extent return tx, (2**zoom - 1) - ty def QuadTree(self, tx, ty, zoom): "Converts TMS tile coordinates to Microsoft QuadTree" quadKey = "" ty = (2**zoom - 1) - ty for i in range(zoom, 0, -1): digit = 0 mask = 1 << (i - 1) if (tx & mask) != 0: digit += 1 if (ty & mask) != 0: digit += 2 quadKey += str(digit) return quadKey class GlobalGeodetic(object): r""" TMS Global Geodetic Profile --------------------------- Functions necessary for generation of global tiles in Plate Carre projection, EPSG:4326, "unprojected profile". Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters) and you can overlay the tiles on top of OpenLayers base map. Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left). What coordinate conversions do we need for TMS Global Geodetic tiles? Global Geodetic tiles are using geodetic coordinates (latitude,longitude) directly as planar coordinates XY (it is also called Unprojected or Plate Carre). We need only scaling to pixel pyramid and cutting to tiles. Pyramid has on top level two tiles, so it is not square but rectangle. Area [-180,-90,180,90] is scaled to 512x256 pixels. TMS has coordinate origin (for pixels and tiles) in bottom-left corner. Rasters are in EPSG:4326 and therefore are compatible with Google Earth. LatLon <-> Pixels <-> Tiles WGS84 coordinates Pixels in pyramid Tiles in pyramid lat/lon XY pixels Z zoom XYZ from TMS EPSG:4326 .----. ---- / \ <-> /--------/ <-> TMS \ / /--------------/ ----- /--------------------/ WMS, KML Web Clients, Google Earth TileMapService """ def __init__(self, tmscompatible, tile_size=256): self.tile_size = tile_size if tmscompatible is not None: # Defaults the resolution factor to 0.703125 (2 tiles @ level 0) # Adhers to OSGeo TMS spec # http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic self.resFact = 180.0 / self.tile_size else: # Defaults the resolution factor to 1.40625 (1 tile @ level 0) # Adheres OpenLayers, MapProxy, etc default resolution for WMTS self.resFact = 360.0 / self.tile_size def LonLatToPixels(self, lon, lat, zoom): "Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid" res = self.resFact / 2**zoom px = (180 + lon) / res py = (90 + lat) / res return px, py def PixelsToTile(self, px, py): "Returns coordinates of the tile covering region in pixel coordinates" tx = int(math.ceil(px / float(self.tile_size)) - 1) ty = int(math.ceil(py / float(self.tile_size)) - 1) return tx, ty def LonLatToTile(self, lon, lat, zoom): "Returns the tile for zoom which covers given lon/lat coordinates" px, py = self.LonLatToPixels(lon, lat, zoom) return self.PixelsToTile(px, py) def Resolution(self, zoom): "Resolution (arc/pixel) for given zoom level (measured at Equator)" return self.resFact / 2**zoom def ZoomForPixelSize(self, pixelSize): "Maximal scaledown zoom of the pyramid closest to the pixelSize." for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): return max(0, i - 1) # We don't want to scale up return MAXZOOMLEVEL - 1 def TileBounds(self, tx, ty, zoom): "Returns bounds of the given tile" res = self.resFact / 2**zoom return ( tx * self.tile_size * res - 180, ty * self.tile_size * res - 90, (tx + 1) * self.tile_size * res - 180, (ty + 1) * self.tile_size * res - 90 ) def TileLatLonBounds(self, tx, ty, zoom): "Returns bounds of the given tile in the SWNE form" b = self.TileBounds(tx, ty, zoom) return (b[1], b[0], b[3], b[2]) class Zoomify(object): """ Tiles compatible with the Zoomify viewer ---------------------------------------- """ def __init__(self, width, height, tile_size=256, tileformat='jpg'): """Initialization of the Zoomify tile tree""" self.tile_size = tile_size self.tileformat = tileformat imagesize = (width, height) tiles = (math.ceil(width / tile_size), math.ceil(height / tile_size)) # Size (in tiles) for each tier of pyramid. self.tierSizeInTiles = [] self.tierSizeInTiles.append(tiles) # Image size in pixels for each pyramid tierself self.tierImageSize = [] self.tierImageSize.append(imagesize) while (imagesize[0] > tile_size or imagesize[1] > tile_size): imagesize = (math.floor(imagesize[0] / 2), math.floor(imagesize[1] / 2)) tiles = (math.ceil(imagesize[0] / tile_size), math.ceil(imagesize[1] / tile_size)) self.tierSizeInTiles.append(tiles) self.tierImageSize.append(imagesize) self.tierSizeInTiles.reverse() self.tierImageSize.reverse() # Depth of the Zoomify pyramid, number of tiers (zoom levels) self.numberOfTiers = len(self.tierSizeInTiles) # Number of tiles up to the given tier of pyramid. self.tileCountUpToTier = [] self.tileCountUpToTier[0] = 0 for i in range(1, self.numberOfTiers + 1): self.tileCountUpToTier.append( self.tierSizeInTiles[i - 1][0] * self.tierSizeInTiles[i - 1][1] + self.tileCountUpToTier[i - 1] ) def tilefilename(self, x, y, z): """Returns filename for tile with given coordinates""" tileIndex = x + y * self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z] return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256), "%s-%s-%s.%s" % (z, x, y, self.tileformat)) class GDALError(Exception): pass def exit_with_error(message, details=""): # Message printing and exit code kept from the way it worked using the OptionParser (in case # someone parses the error output) sys.stderr.write("Usage: gdal2tiles.py [options] input_file [output]\n\n") sys.stderr.write("gdal2tiles.py: error: %s\n" % message) if details: sys.stderr.write("\n\n%s\n" % details) sys.exit(2) def set_cache_max(cache_in_bytes): # We set the maximum using `SetCacheMax` and `GDAL_CACHEMAX` to support both fork and spawn as multiprocessing start methods. # https://github.com/OSGeo/gdal/pull/2112 os.environ['GDAL_CACHEMAX'] = '%d' % int(cache_in_bytes / 1024 / 1024) gdal.SetCacheMax(cache_in_bytes) def generate_kml(tx, ty, tz, tileext, tile_size, tileswne, options, children=None, **args): """ Template for the KML. Returns filled string. """ if not children: children = [] args['tx'], args['ty'], args['tz'] = tx, ty, tz args['tileformat'] = tileext if 'tile_size' not in args: args['tile_size'] = tile_size if 'minlodpixels' not in args: args['minlodpixels'] = int(args['tile_size'] / 2) if 'maxlodpixels' not in args: args['maxlodpixels'] = int(args['tile_size'] * 8) if children == []: args['maxlodpixels'] = -1 if tx is None: tilekml = False args['title'] = options.title else: tilekml = True args['realtiley'] = GDAL2Tiles.getYTile(ty, tz, options) args['title'] = "%d/%d/%d.kml" % (tz, tx, args['realtiley']) args['south'], args['west'], args['north'], args['east'] = tileswne(tx, ty, tz) if tx == 0: args['drawOrder'] = 2 * tz + 1 elif tx is not None: args['drawOrder'] = 2 * tz else: args['drawOrder'] = 0 url = options.url if not url: if tilekml: url = "../../" else: url = "" s = """ %(title)s """ % args if tilekml: s += """ %(north).14f %(south).14f %(east).14f %(west).14f %(minlodpixels)d %(maxlodpixels)d %(drawOrder)d %(realtiley)d.%(tileformat)s %(north).14f %(south).14f %(east).14f %(west).14f """ % args for cx, cy, cz in children: csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz) ytile = GDAL2Tiles.getYTile(cy, cz, options) s += """ %d/%d/%d.%s %.14f %.14f %.14f %.14f %d -1 %s%d/%d/%d.kml onRegion """ % (cz, cx, ytile, args['tileformat'], cnorth, csouth, ceast, cwest, args['minlodpixels'], url, cz, cx, ytile) s += """ """ return s def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''): """Scales down query dataset to the tile dataset""" querysize = dsquery.RasterXSize tile_size = dstile.RasterXSize tilebands = dstile.RasterCount if options.resampling == 'average': # Function: gdal.RegenerateOverview() for i in range(1, tilebands + 1): # Black border around NODATA res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), 'average') if res != 0: exit_with_error("RegenerateOverview() failed on %s, error %d" % ( tilefilename, res)) elif options.resampling == 'antialias' and numpy_available: # Scaling by PIL (Python Imaging Library) - improved Lanczos array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) for i in range(tilebands): array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize) im = Image.fromarray(array, 'RGBA') # Always four bands im1 = im.resize((tile_size, tile_size), Image.ANTIALIAS) if os.path.exists(tilefilename): im0 = Image.open(tilefilename) im1 = Image.composite(im1, im0, im1) im1.save(tilefilename, tiledriver) else: if options.resampling == 'near': gdal_resampling = gdal.GRA_NearestNeighbour elif options.resampling == 'bilinear': gdal_resampling = gdal.GRA_Bilinear elif options.resampling == 'cubic': gdal_resampling = gdal.GRA_Cubic elif options.resampling == 'cubicspline': gdal_resampling = gdal.GRA_CubicSpline elif options.resampling == 'lanczos': gdal_resampling = gdal.GRA_Lanczos elif options.resampling == 'mode': gdal_resampling = gdal.GRA_Mode elif options.resampling == 'max': gdal_resampling = gdal.GRA_Max elif options.resampling == 'min': gdal_resampling = gdal.GRA_Min elif options.resampling == 'med': gdal_resampling = gdal.GRA_Med elif options.resampling == 'q1': gdal_resampling = gdal.GRA_Q1 elif options.resampling == 'q3': gdal_resampling = gdal.GRA_Q3 # Other algorithms are implemented by gdal.ReprojectImage(). dsquery.SetGeoTransform((0.0, tile_size / float(querysize), 0.0, 0.0, 0.0, tile_size / float(querysize))) dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) if res != 0: exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) def setup_no_data_values(input_dataset, options): """ Extract the NODATA values from the dataset or use the passed arguments as override if any """ in_nodata = [] if options.srcnodata: nds = list(map(float, options.srcnodata.split(','))) if len(nds) < input_dataset.RasterCount: in_nodata = (nds * input_dataset.RasterCount)[:input_dataset.RasterCount] else: in_nodata = nds else: for i in range(1, input_dataset.RasterCount + 1): band = input_dataset.GetRasterBand(i) raster_no_data = band.GetNoDataValue() if raster_no_data is not None: # Ignore nodata values that are not in the range of the band data type (see https://github.com/OSGeo/gdal/pull/2299) if band.DataType == gdal.GDT_Byte and (raster_no_data != int(raster_no_data) or raster_no_data < 0 or raster_no_data > 255): # We should possibly do similar check for other data types in_nodata = [] break in_nodata.append(raster_no_data) if options.verbose: print("NODATA: %s" % in_nodata) return in_nodata def setup_input_srs(input_dataset, options): """ Determines and returns the Input Spatial Reference System (SRS) as an osr object and as a WKT representation Uses in priority the one passed in the command line arguments. If None, tries to extract them from the input dataset """ input_srs = None input_srs_wkt = None if options.s_srs: input_srs = osr.SpatialReference() input_srs.SetFromUserInput(options.s_srs) input_srs_wkt = input_srs.ExportToWkt() else: input_srs_wkt = input_dataset.GetProjection() if not input_srs_wkt and input_dataset.GetGCPCount() != 0: input_srs_wkt = input_dataset.GetGCPProjection() if input_srs_wkt: input_srs = osr.SpatialReference() input_srs.ImportFromWkt(input_srs_wkt) if input_srs is not None: input_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) return input_srs, input_srs_wkt def setup_output_srs(input_srs, options): """ Setup the desired SRS (based on options) """ output_srs = osr.SpatialReference() if options.profile == 'mercator': output_srs.ImportFromEPSG(3857) elif options.profile == 'geodetic': output_srs.ImportFromEPSG(4326) elif options.profile == 'raster': output_srs = input_srs else: output_srs = tmsMap[options.profile].srs.Clone() if output_srs: output_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) return output_srs def has_georeference(dataset): return (dataset.GetGeoTransform() != (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) or dataset.GetGCPCount() != 0) def reproject_dataset(from_dataset, from_srs, to_srs, options=None): """ Returns the input dataset in the expected "destination" SRS. If the dataset is already in the correct SRS, returns it unmodified """ if not from_srs or not to_srs: raise GDALError("from and to SRS must be defined to reproject the dataset") if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or (from_dataset.GetGCPCount() != 0): if from_srs.IsGeographic() and to_srs.GetAuthorityName(None) == 'EPSG' and to_srs.GetAuthorityCode(None) == '3857': from_gt = from_dataset.GetGeoTransform(can_return_null=True) if from_gt and from_gt[2] == 0 and from_gt[4] == 0 and from_gt[5] < 0: maxlat = from_gt[3] minlat = from_gt[3] + from_dataset.RasterYSize * from_gt[5] MAX_LAT = 85.0511287798066 adjustBounds = False if maxlat > MAX_LAT: maxlat = MAX_LAT adjustBounds = True if minlat < -MAX_LAT: minlat = -MAX_LAT adjustBounds = True if adjustBounds: ct = osr.CoordinateTransformation(from_srs, to_srs) west, south = ct.TransformPoint(from_gt[0], minlat)[:2] east, north = ct.TransformPoint(from_gt[0] + from_dataset.RasterXSize * from_gt[1], maxlat)[:2] return gdal.Warp("", from_dataset, format='VRT', outputBounds = [west, south, east, north], dstSRS = 'EPSG:3857') to_dataset = gdal.AutoCreateWarpedVRT(from_dataset, from_srs.ExportToWkt(), to_srs.ExportToWkt()) if options and options.verbose: print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')") to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset) return to_dataset else: return from_dataset def add_gdal_warp_options_to_string(vrt_string, warp_options): if not warp_options: return vrt_string vrt_root = ElementTree.fromstring(vrt_string) options = vrt_root.find("GDALWarpOptions") if options is None: return vrt_string for key, value in warp_options.items(): tb = ElementTree.TreeBuilder() tb.start("Option", {"name": key}) tb.data(value) tb.end("Option") elem = tb.close() options.insert(0, elem) return ElementTree.tostring(vrt_root).decode() def update_no_data_values(warped_vrt_dataset, nodata_values, options=None): """ Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed """ # TODO: gbataille - Seems that I forgot tests there assert nodata_values != [] vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] vrt_string = add_gdal_warp_options_to_string( vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"}) # TODO: gbataille - check the need for this replacement. Seems to work without # # replace BandMapping tag for NODATA bands.... # for i in range(len(nodata_values)): # s = s.replace( # '' % ((i+1), (i+1)), # """ # # %i # 0 # %i # 0 # # """ % ((i+1), (i+1), nodata_values[i], nodata_values[i])) corrected_dataset = gdal.Open(vrt_string) # set NODATA_VALUE metadata corrected_dataset.SetMetadataItem( 'NODATA_VALUES', ' '.join([str(i) for i in nodata_values])) if options and options.verbose: print("Modified warping result saved into 'tiles1.vrt'") with open("tiles1.vrt", "w") as f: f.write(corrected_dataset.GetMetadata("xml:VRT")[0]) return corrected_dataset def add_alpha_band_to_string_vrt(vrt_string): # TODO: gbataille - Old code speak of this being equivalent to gdalwarp -dstalpha # To be checked vrt_root = ElementTree.fromstring(vrt_string) index = 0 nb_bands = 0 for subelem in list(vrt_root): if subelem.tag == "VRTRasterBand": nb_bands += 1 color_node = subelem.find("./ColorInterp") if color_node is not None and color_node.text == "Alpha": raise Exception("Alpha band already present") else: if nb_bands: # This means that we are one element after the Band definitions break index += 1 tb = ElementTree.TreeBuilder() tb.start("VRTRasterBand", {'dataType': "Byte", "band": str(nb_bands + 1), "subClass": "VRTWarpedRasterBand"}) tb.start("ColorInterp", {}) tb.data("Alpha") tb.end("ColorInterp") tb.end("VRTRasterBand") elem = tb.close() vrt_root.insert(index, elem) warp_options = vrt_root.find(".//GDALWarpOptions") tb = ElementTree.TreeBuilder() tb.start("DstAlphaBand", {}) tb.data(str(nb_bands + 1)) tb.end("DstAlphaBand") elem = tb.close() warp_options.append(elem) # TODO: gbataille - this is a GDALWarpOptions. Why put it in a specific place? tb = ElementTree.TreeBuilder() tb.start("Option", {"name": "INIT_DEST"}) tb.data("0") tb.end("Option") elem = tb.close() warp_options.append(elem) return ElementTree.tostring(vrt_root).decode() def update_alpha_value_for_non_alpha_inputs(warped_vrt_dataset, options=None): """ Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has not been forced by options """ if warped_vrt_dataset.RasterCount in [1, 3]: vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0] vrt_string = add_alpha_band_to_string_vrt(vrt_string) warped_vrt_dataset = gdal.Open(vrt_string) if options and options.verbose: print("Modified -dstalpha warping result saved into 'tiles1.vrt'") with open("tiles1.vrt", "w") as f: f.write(warped_vrt_dataset.GetMetadata("xml:VRT")[0]) return warped_vrt_dataset def nb_data_bands(dataset): """ Return the number of data (non-alpha) bands of a gdal dataset """ alphaband = dataset.GetRasterBand(1).GetMaskBand() if ((alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or dataset.RasterCount == 4 or dataset.RasterCount == 2): return dataset.RasterCount - 1 return dataset.RasterCount def create_base_tile(tile_job_info, tile_detail): dataBandsCount = tile_job_info.nb_data_bands output = tile_job_info.output_file_path tileext = tile_job_info.tile_extension tile_size = tile_job_info.tile_size options = tile_job_info.options tilebands = dataBandsCount + 1 cached_ds = getattr(threadLocal, 'cached_ds', None) if cached_ds and cached_ds.GetDescription() == tile_job_info.src_file: ds = cached_ds else: ds = gdal.Open(tile_job_info.src_file, gdal.GA_ReadOnly) threadLocal.cached_ds = ds mem_drv = gdal.GetDriverByName('MEM') out_drv = gdal.GetDriverByName(tile_job_info.tile_driver) alphaband = ds.GetRasterBand(1).GetMaskBand() tx = tile_detail.tx ty = tile_detail.ty tz = tile_detail.tz rx = tile_detail.rx ry = tile_detail.ry rxsize = tile_detail.rxsize rysize = tile_detail.rysize wx = tile_detail.wx wy = tile_detail.wy wxsize = tile_detail.wxsize wysize = tile_detail.wysize querysize = tile_detail.querysize # Tile dataset in memory tilefilename = os.path.join( output, str(tz), str(tx), "%s.%s" % (ty, tileext)) dstile = mem_drv.Create('', tile_size, tile_size, tilebands) data = alpha = None if options.verbose: print("\tReadRaster Extent: ", (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)) # Query is in 'nearest neighbour' but can be bigger in then the tile_size # We scale down the query to the tile_size by supplied algorithm. if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0: alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize) # Detect totally transparent tile and skip its creation if tile_job_info.exclude_transparent and len(alpha) == alpha.count('\x00'.encode('ascii')): return data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize, band_list=list(range(1, dataBandsCount + 1))) # The tile in memory is a transparent file by default. Write pixel values into it if # any if data: if tile_size == querysize: # Use the ReadRaster result directly in tiles ('nearest neighbour' query) dstile.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1, dataBandsCount + 1))) dstile.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) # Note: For source drivers based on WaveLet compression (JPEG2000, ECW, # MrSID) the ReadRaster function returns high-quality raster (not ugly # nearest neighbour) # TODO: Use directly 'near' for WaveLet files else: # Big ReadRaster query in memory scaled to the tile_size - all but 'near' # algo dsquery = mem_drv.Create('', querysize, querysize, tilebands) # TODO: fill the null value in case a tile without alpha is produced (now # only png tiles are supported) dsquery.WriteRaster(wx, wy, wxsize, wysize, data, band_list=list(range(1, dataBandsCount + 1))) dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands]) scale_query_to_tile(dsquery, dstile, tile_job_info.tile_driver, options, tilefilename=tilefilename) del dsquery del data if options.resampling != 'antialias': # Write a copy of tile to png/jpg out_drv.CreateCopy(tilefilename, dstile, strict=0) del dstile # Create a KML file for this tile. if tile_job_info.kml: swne = get_tile_swne(tile_job_info, options) if swne is not None: kmlfilename = os.path.join(output, str(tz), str(tx), '%d.kml' % GDAL2Tiles.getYTile(ty, tz, options)) if not options.resume or not os.path.exists(kmlfilename): with open(kmlfilename, 'wb') as f: f.write(generate_kml( tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size, swne, tile_job_info.options ).encode('utf-8')) def create_overview_tiles(tile_job_info, output_folder, options): """Generation of the overview tiles (higher in the pyramid) based on existing tiles""" mem_driver = gdal.GetDriverByName('MEM') tile_driver = tile_job_info.tile_driver out_driver = gdal.GetDriverByName(tile_driver) tilebands = tile_job_info.nb_data_bands + 1 # Usage of existing tiles: from 4 underlying tiles generate one as overview. tcount = 0 for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] tcount += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 if tcount == 0: return if not options.quiet: print("Generating Overview Tiles:") progress_bar = ProgressBar(tcount) progress_bar.start() for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1): tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz] for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 ytile = GDAL2Tiles.getYTile(ty, tz, options) tilefilename = os.path.join(output_folder, str(tz), str(tx), "%s.%s" % (ytile, tile_job_info.tile_extension)) if options.verbose: print(ti, '/', tcount, tilefilename) if options.resume and os.path.exists(tilefilename): if options.verbose: print("Tile generation skipped because of --resume") else: progress_bar.log_progress() continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) dsquery = mem_driver.Create('', 2 * tile_job_info.tile_size, 2 * tile_job_info.tile_size, tilebands) # TODO: fill the null value dstile = mem_driver.Create('', tile_job_info.tile_size, tile_job_info.tile_size, tilebands) # TODO: Implement more clever walking on the tiles with cache functionality # probably walk should start with reading of four tiles from top left corner # Hilbert curve children = [] # Read the tiles and write them to query window for y in range(2 * ty, 2 * ty + 2): for x in range(2 * tx, 2 * tx + 2): minx, miny, maxx, maxy = tile_job_info.tminmax[tz + 1] if x >= minx and x <= maxx and y >= miny and y <= maxy: ytile2 = GDAL2Tiles.getYTile(y, tz+1, options) base_tile_path = os.path.join(output_folder, str(tz + 1), str(x), "%s.%s" % (ytile2, tile_job_info.tile_extension)) if not os.path.isfile(base_tile_path): continue dsquerytile = gdal.Open( base_tile_path, gdal.GA_ReadOnly) if x == 2*tx: tileposx = 0 else: tileposx = tile_job_info.tile_size if options.xyz and options.profile == 'raster': if y == 2*ty: tileposy = 0 else: tileposy = tile_job_info.tile_size else: if y == 2*ty: tileposy = tile_job_info.tile_size else: tileposy = 0 dsquery.WriteRaster( tileposx, tileposy, tile_job_info.tile_size, tile_job_info.tile_size, dsquerytile.ReadRaster(0, 0, tile_job_info.tile_size, tile_job_info.tile_size), band_list=list(range(1, tilebands + 1))) children.append([x, y, tz + 1]) if children: scale_query_to_tile(dsquery, dstile, tile_driver, options, tilefilename=tilefilename) # Write a copy of tile to png/jpg if options.resampling != 'antialias': # Write a copy of tile to png/jpg out_driver.CreateCopy(tilefilename, dstile, strict=0) if options.verbose: print("\tbuild from zoom", tz + 1, " tiles:", (2 * tx, 2 * ty), (2 * tx + 1, 2 * ty), (2 * tx, 2 * ty + 1), (2 * tx + 1, 2 * ty + 1)) # Create a KML file for this tile. if tile_job_info.kml: swne = get_tile_swne(tile_job_info, options) if swne is not None: with open(os.path.join( output_folder, '%d/%d/%d.kml' % (tz, tx, ytile) ), 'wb') as f: f.write(generate_kml( tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size, swne, options, children ).encode('utf-8')) if not options.verbose and not options.quiet: progress_bar.log_progress() def optparse_init(): """Prepare the option parser for input (argv)""" from optparse import OptionParser, OptionGroup usage = "Usage: %prog [options] input_file [output]" p = OptionParser(usage, version="%prog " + __version__) p.add_option("-p", "--profile", dest='profile', type='choice', choices=profile_list, help=("Tile cutting profile (%s) - default 'mercator' " "(Google Maps compatible)" % ",".join(profile_list))) p.add_option("-r", "--resampling", dest="resampling", type='choice', choices=resampling_list, help="Resampling method (%s) - default 'average'" % ",".join(resampling_list)) p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS", help="The spatial reference system used for the source input data") p.add_option('-z', '--zoom', dest="zoom", help="Zoom levels to render (format:'2-5' or '10').") p.add_option('-e', '--resume', dest="resume", action="store_true", help="Resume mode. Generate only missing files.") p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA", help="Value in the input dataset considered as transparent") p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true", help=("When using the geodetic profile, specifies the base resolution " "as 0.703125 or 2 tiles at zoom level 0.")) p.add_option('--xyz', action='store_true', dest='xyz', help="Use XYZ tile numbering (OSM Slippy Map tiles) instead of TMS") p.add_option("-v", "--verbose", action="store_true", dest="verbose", help="Print status messages to stdout") p.add_option("-x", "--exclude", action="store_true", dest="exclude_transparent", help="Exclude transparent tiles from result tileset") p.add_option("-q", "--quiet", action="store_true", dest="quiet", help="Disable messages and status to stdout") p.add_option("--processes", dest="nb_processes", type='int', help="Number of processes to use for tiling") p.add_option("--tilesize", dest="tilesize", metavar="PIXELS", default=256, type='int', help="Width and height in pixel of a tile") # KML options g = OptionGroup(p, "KML (Google Earth) options", "Options for generated Google Earth SuperOverlay metadata") g.add_option("-k", "--force-kml", dest='kml', action="store_true", help=("Generate KML for Google Earth - default for 'geodetic' profile and " "'raster' in EPSG:4326. For a dataset with different projection use " "with caution!")) g.add_option("-n", "--no-kml", dest='kml', action="store_false", help="Avoid automatic generation of KML files for EPSG:4326") g.add_option("-u", "--url", dest='url', help="URL address where the generated tiles are going to be published") p.add_option_group(g) # HTML options g = OptionGroup(p, "Web viewer options", "Options for generated HTML viewers a la Google Maps") g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list, help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list)) g.add_option("-t", "--title", dest='title', help="Title of the map") g.add_option("-c", "--copyright", dest='copyright', help="Copyright for the map") g.add_option("-g", "--googlekey", dest='googlekey', help="Google Maps API key from http://code.google.com/apis/maps/signup.html") g.add_option("-b", "--bingkey", dest='bingkey', help="Bing Maps API key from https://www.bingmapsportal.com/") p.add_option_group(g) # MapML options g = OptionGroup(p, "MapML options", "Options for generated MapML file") g.add_option("--mapml-template", dest='mapml_template', action="store_true", help=("Filename of a template mapml file where variables will " "be substituted. If not specified, the generic " "template_tiles.mapml file from GDAL data resources " "will be used")) p.add_option_group(g) p.set_defaults(verbose=False, profile="mercator", kml=False, url='', webviewer='all', copyright='', resampling='average', resume=False, googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE', processes=1) return p def process_args(argv): parser = optparse_init() options, args = parser.parse_args(args=argv) # Args should be either an input file OR an input file and an output folder if not args: exit_with_error("You need to specify at least an input file as argument to the script") if len(args) > 2: exit_with_error("Processing of several input files is not supported.", "Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the " "files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(args)) input_file = args[0] if not os.path.isfile(input_file): exit_with_error("The provided input file %s does not exist or is not a file" % input_file) if len(args) == 2: output_folder = args[1] else: # Directory with input filename without extension in actual directory output_folder = os.path.splitext(os.path.basename(input_file))[0] if options.webviewer == 'mapml': options.xyz = True if options.profile == 'geodetic': options.tmscompatible = True options = options_post_processing(options, input_file, output_folder) return input_file, output_folder, options def options_post_processing(options, input_file, output_folder): if not options.title: options.title = os.path.basename(input_file) if options.url and not options.url.endswith('/'): options.url += '/' if options.url: out_path = output_folder if out_path.endswith("/"): out_path = out_path[:-1] options.url += os.path.basename(out_path) + '/' # Supported options if options.resampling == 'antialias' and not numpy_available: exit_with_error("'antialias' resampling algorithm is not available.", "Install PIL (Python Imaging Library) and numpy.") try: os.path.basename(input_file).encode('ascii') except UnicodeEncodeError: full_ascii = False else: full_ascii = True # LC_CTYPE check if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""): if not options.quiet: print("\nWARNING: " "You are running gdal2tiles.py with a LC_CTYPE environment variable that is " "not UTF-8 compatible, and your input file contains non-ascii characters. " "The generated sample googlemaps, openlayers or " "leaflet files might contain some invalid characters as a result\n") # Output the results if options.verbose: print("Options:", options) print("Input:", input_file) print("Output:", output_folder) print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024)) print('') return options class TileDetail(object): tx = 0 ty = 0 tz = 0 rx = 0 ry = 0 rxsize = 0 rysize = 0 wx = 0 wy = 0 wxsize = 0 wysize = 0 querysize = 0 def __init__(self, **kwargs): for key in kwargs: if hasattr(self, key): setattr(self, key, kwargs[key]) def __unicode__(self): return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) def __str__(self): return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) def __repr__(self): return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz) class TileJobInfo(object): """ Plain object to hold tile job configuration for a dataset """ src_file = "" nb_data_bands = 0 output_file_path = "" tile_extension = "" tile_size = 0 tile_driver = None kml = False tminmax = [] tminz = 0 tmaxz = 0 in_srs_wkt = 0 out_geo_trans = [] ominy = 0 is_epsg_4326 = False options = None exclude_transparent = False def __init__(self, **kwargs): for key in kwargs: if hasattr(self, key): setattr(self, key, kwargs[key]) def __unicode__(self): return "TileJobInfo %s\n" % (self.src_file) def __str__(self): return "TileJobInfo %s\n" % (self.src_file) def __repr__(self): return "TileJobInfo %s\n" % (self.src_file) class Gdal2TilesError(Exception): pass class GDAL2Tiles(object): def __init__(self, input_file, output_folder, options): """Constructor function - initialization""" self.out_drv = None self.mem_drv = None self.warped_input_dataset = None self.out_srs = None self.nativezoom = None self.tminmax = None self.tsize = None self.mercator = None self.geodetic = None self.alphaband = None self.dataBandsCount = None self.out_gt = None self.tileswne = None self.swne = None self.ominx = None self.omaxx = None self.omaxy = None self.ominy = None self.input_file = None self.output_folder = None self.isepsg4326 = None self.in_srs = None self.in_srs_wkt = None # Tile format self.tile_size = 256 if options.tilesize: self.tile_size = options.tilesize self.tiledriver = 'PNG' self.tileext = 'png' self.tmp_dir = tempfile.mkdtemp() self.tmp_vrt_filename = os.path.join(self.tmp_dir, str(uuid4()) + '.vrt') # Should we read bigger window of the input raster and scale it down? # Note: Modified later by open_input() # Not for 'near' resampling # Not for Wavelet based drivers (JPEG2000, ECW, MrSID) # Not for 'raster' profile self.scaledquery = True # How big should be query window be for scaling down # Later on reset according the chosen resampling algorithm self.querysize = 4 * self.tile_size # Should we use Read on the input file for generating overview tiles? # Note: Modified later by open_input() # Otherwise the overview tiles are generated from existing underlying tiles self.overviewquery = False self.input_file = input_file self.output_folder = output_folder self.options = options if self.options.resampling == 'near': self.querysize = self.tile_size elif self.options.resampling == 'bilinear': self.querysize = self.tile_size * 2 # User specified zoom levels self.tminz = None self.tmaxz = None if self.options.zoom: minmax = self.options.zoom.split('-', 1) minmax.extend(['']) zoom_min, zoom_max = minmax[:2] self.tminz = int(zoom_min) if zoom_max: if int(zoom_max) < self.tminz: raise Exception('max zoom (%d) less than min zoom (%d)' % (int(zoom_max), self.tminz)) self.tmaxz = int(zoom_max) else: self.tmaxz = int(zoom_min) # KML generation self.kml = self.options.kml # ------------------------------------------------------------------------- def open_input(self): """Initialization of the input raster, reprojection if necessary""" gdal.AllRegister() self.out_drv = gdal.GetDriverByName(self.tiledriver) self.mem_drv = gdal.GetDriverByName('MEM') if not self.out_drv: raise Exception("The '%s' driver was not found, is it available in this GDAL build?" % self.tiledriver) if not self.mem_drv: raise Exception("The 'MEM' driver was not found, is it available in this GDAL build?") # Open the input file if self.input_file: input_dataset = gdal.Open(self.input_file, gdal.GA_ReadOnly) else: raise Exception("No input file was specified") if self.options.verbose: print("Input file:", "( %sP x %sL - %s bands)" % (input_dataset.RasterXSize, input_dataset.RasterYSize, input_dataset.RasterCount)) if not input_dataset: # Note: GDAL prints the ERROR message too exit_with_error("It is not possible to open the input file '%s'." % self.input_file) # Read metadata from the input file if input_dataset.RasterCount == 0: exit_with_error("Input file '%s' has no raster band" % self.input_file) if input_dataset.GetRasterBand(1).GetRasterColorTable(): exit_with_error( "Please convert this file to RGB/RGBA and run gdal2tiles on the result.", "From paletted file you can create RGBA file (temp.vrt) by:\n" "gdal_translate -of vrt -expand rgba %s temp.vrt\n" "then run:\n" "gdal2tiles temp.vrt" % self.input_file ) if input_dataset.GetRasterBand(1).DataType != gdal.GDT_Byte: exit_with_error( "Please convert this file to 8-bit and run gdal2tiles on the result.", "To scale pixel values you can use:\n" "gdal_translate -of VRT -ot Byte -scale %s temp.vrt\n" "then run:\n" "gdal2tiles temp.vrt" % self.input_file ) in_nodata = setup_no_data_values(input_dataset, self.options) if self.options.verbose: print("Preprocessed file:", "( %sP x %sL - %s bands)" % (input_dataset.RasterXSize, input_dataset.RasterYSize, input_dataset.RasterCount)) self.in_srs, self.in_srs_wkt = setup_input_srs(input_dataset, self.options) self.out_srs = setup_output_srs(self.in_srs, self.options) # If input and output reference systems are different, we reproject the input dataset into # the output reference system for easier manipulation self.warped_input_dataset = None if self.options.profile != 'raster': if not self.in_srs: exit_with_error( "Input file has unknown SRS.", "Use --s_srs EPSG:xyz (or similar) to provide source reference system.") if not has_georeference(input_dataset): exit_with_error( "There is no georeference - neither affine transformation (worldfile) " "nor GCPs. You can generate only 'raster' profile tiles.", "Either gdal2tiles with parameter -p 'raster' or use another GIS " "software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs" ) if ((self.in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or (input_dataset.GetGCPCount() != 0)): self.warped_input_dataset = reproject_dataset( input_dataset, self.in_srs, self.out_srs) if in_nodata: self.warped_input_dataset = update_no_data_values( self.warped_input_dataset, in_nodata, options=self.options) else: self.warped_input_dataset = update_alpha_value_for_non_alpha_inputs( self.warped_input_dataset, options=self.options) if self.warped_input_dataset and self.options.verbose: print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % ( self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize, self.warped_input_dataset.RasterCount)) if not self.warped_input_dataset: self.warped_input_dataset = input_dataset gdal.GetDriverByName('VRT').CreateCopy(self.tmp_vrt_filename, self.warped_input_dataset) # Get alpha band (either directly or from NODATA value) self.alphaband = self.warped_input_dataset.GetRasterBand(1).GetMaskBand() self.dataBandsCount = nb_data_bands(self.warped_input_dataset) # KML test self.isepsg4326 = False srs4326 = osr.SpatialReference() srs4326.ImportFromEPSG(4326) srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4(): self.kml = True self.isepsg4326 = True if self.options.verbose: print("KML autotest OK!") # Read the georeference self.out_gt = self.warped_input_dataset.GetGeoTransform() # Test the size of the pixel # Report error in case rotation/skew is in geotransform (possible only in 'raster' profile) if (self.out_gt[2], self.out_gt[4]) != (0, 0): exit_with_error("Georeference of the raster contains rotation or skew. " "Such raster is not supported. Please use gdalwarp first.") # Here we expect: pixel is square, no rotation on the raster # Output Bounds - coordinates in the output SRS self.ominx = self.out_gt[0] self.omaxx = self.out_gt[0] + self.warped_input_dataset.RasterXSize * self.out_gt[1] self.omaxy = self.out_gt[3] self.ominy = self.out_gt[3] - self.warped_input_dataset.RasterYSize * self.out_gt[1] # Note: maybe round(x, 14) to avoid the gdal_translate behavior, when 0 becomes -1e-15 if self.options.verbose: print("Bounds (output srs):", round(self.ominx, 13), self.ominy, self.omaxx, self.omaxy) # Calculating ranges for tiles in different zoom levels if self.options.profile == 'mercator': self.mercator = GlobalMercator(tile_size=self.tile_size) # Function which generates SWNE in LatLong for given tile self.tileswne = self.mercator.TileLatLonBounds # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, 32)) for tz in range(0, 32): tminx, tminy = self.mercator.MetersToTile(self.ominx, self.ominy, tz) tmaxx, tmaxy = self.mercator.MetersToTile(self.omaxx, self.omaxy, tz) # crop tiles extending world limits (+-180,+-90) tminx, tminy = max(0, tminx), max(0, tminy) tmaxx, tmaxy = min(2**tz - 1, tmaxx), min(2**tz - 1, tmaxy) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # TODO: Maps crossing 180E (Alaska?) # Get the minimal zoom level (map covers area equivalent to one tile) if self.tminz is None: self.tminz = self.mercator.ZoomForPixelSize( self.out_gt[1] * max(self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize) / float(self.tile_size)) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tmaxz is None: self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1]) self.tminz = min(self.tminz, self.tmaxz) if self.options.verbose: print("Bounds (latlong):", self.mercator.MetersToLatLon(self.ominx, self.ominy), self.mercator.MetersToLatLon(self.omaxx, self.omaxy)) print('MinZoomLevel:', self.tminz) print("MaxZoomLevel:", self.tmaxz, "(", self.mercator.Resolution(self.tmaxz), ")") elif self.options.profile == 'geodetic': self.geodetic = GlobalGeodetic(self.options.tmscompatible, tile_size=self.tile_size) # Function which generates SWNE in LatLong for given tile self.tileswne = self.geodetic.TileLatLonBounds # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, 32)) for tz in range(0, 32): tminx, tminy = self.geodetic.LonLatToTile(self.ominx, self.ominy, tz) tmaxx, tmaxy = self.geodetic.LonLatToTile(self.omaxx, self.omaxy, tz) # crop tiles extending world limits (+-180,+-90) tminx, tminy = max(0, tminx), max(0, tminy) tmaxx, tmaxy = min(2**(tz + 1) - 1, tmaxx), min(2**tz - 1, tmaxy) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # TODO: Maps crossing 180E (Alaska?) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tminz is None: self.tminz = self.geodetic.ZoomForPixelSize( self.out_gt[1] * max(self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize) / float(self.tile_size)) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tmaxz is None: self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1]) self.tminz = min(self.tminz, self.tmaxz) if self.options.verbose: print("Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy) elif self.options.profile == 'raster': def log2(x): return math.log10(x) / math.log10(2) self.nativezoom = max(0, int( max(math.ceil(log2(self.warped_input_dataset.RasterXSize / float(self.tile_size))), math.ceil(log2(self.warped_input_dataset.RasterYSize / float(self.tile_size)))))) if self.options.verbose: print("Native zoom of the raster:", self.nativezoom) # Get the minimal zoom level (whole raster in one tile) if self.tminz is None: self.tminz = 0 # Get the maximal zoom level (native resolution of the raster) if self.tmaxz is None: self.tmaxz = self.nativezoom elif self.tmaxz > self.nativezoom: print('Clamping max zoom level to %d' % self.nativezoom) self.tmaxz = self.nativezoom # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, self.tmaxz + 1)) self.tsize = list(range(0, self.tmaxz + 1)) for tz in range(0, self.tmaxz + 1): tsize = 2.0**(self.nativezoom - tz) * self.tile_size tminx, tminy = 0, 0 tmaxx = int(math.ceil(self.warped_input_dataset.RasterXSize / tsize)) - 1 tmaxy = int(math.ceil(self.warped_input_dataset.RasterYSize / tsize)) - 1 self.tsize[tz] = math.ceil(tsize) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # Function which generates SWNE in LatLong for given tile if self.kml and self.in_srs_wkt: ct = osr.CoordinateTransformation(self.in_srs, srs4326) def rastertileswne(x, y, z): pixelsizex = (2**(self.tmaxz - z) * self.out_gt[1]) # X-pixel size in level west = self.out_gt[0] + x * self.tile_size * pixelsizex east = west + self.tile_size * pixelsizex if self.options.xyz: north = self.omaxy - y * self.tile_size * pixelsizex south = north - self.tile_size * pixelsizex else: south = self.ominy + y * self.tile_size * pixelsizex north = south + self.tile_size * pixelsizex if not self.isepsg4326: # Transformation to EPSG:4326 (WGS84 datum) west, south = ct.TransformPoint(west, south)[:2] east, north = ct.TransformPoint(east, north)[:2] return south, west, north, east self.tileswne = rastertileswne else: self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa else: tms = tmsMap[self.options.profile] # Function which generates SWNE in LatLong for given tile self.tileswne = None # not implemented # Generate table with min max tile coordinates for all zoomlevels self.tminmax = list(range(0, tms.level_count+1)) for tz in range(0, tms.level_count+1): tminx, tminy = tms.GeorefCoordToTileCoord(self.ominx, self.ominy, tz, self.tile_size) tmaxx, tmaxy = tms.GeorefCoordToTileCoord(self.omaxx, self.omaxy, tz, self.tile_size) tminx, tminy = max(0, tminx), max(0, tminy) tmaxx, tmaxy = min(tms.matrix_width * 2**tz - 1, tmaxx), min(tms.matrix_height * 2**tz - 1, tmaxy) self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy) # Get the minimal zoom level (map covers area equivalent to one tile) if self.tminz is None: self.tminz = tms.ZoomForPixelSize( self.out_gt[1] * max(self.warped_input_dataset.RasterXSize, self.warped_input_dataset.RasterYSize) / float(self.tile_size), self.tile_size) # Get the maximal zoom level # (closest possible zoom level up on the resolution of raster) if self.tmaxz is None: self.tmaxz = tms.ZoomForPixelSize(self.out_gt[1], self.tile_size) self.tminz = min(self.tminz, self.tmaxz) if self.options.verbose: print("Bounds (georef):", self.ominx, self.ominy, self.omaxx, self.omaxy) print('MinZoomLevel:', self.tminz) print("MaxZoomLevel:", self.tmaxz) def generate_metadata(self): """ Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing). """ if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if self.options.profile == 'mercator': south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy) north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy) south, west = max(-85.05112878, south), max(-180.0, west) north, east = min(85.05112878, north), min(180.0, east) self.swne = (south, west, north, east) # Generate googlemaps.html if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator': if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'googlemaps.html'))): with open(os.path.join(self.output_folder, 'googlemaps.html'), 'wb') as f: f.write(self.generate_googlemaps().encode('utf-8')) # Generate leaflet.html if self.options.webviewer in ('all', 'leaflet'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'leaflet.html'))): with open(os.path.join(self.output_folder, 'leaflet.html'), 'wb') as f: f.write(self.generate_leaflet().encode('utf-8')) elif self.options.profile == 'geodetic': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy south, west = max(-90.0, south), max(-180.0, west) north, east = min(90.0, north), min(180.0, east) self.swne = (south, west, north, east) elif self.options.profile == 'raster': west, south = self.ominx, self.ominy east, north = self.omaxx, self.omaxy self.swne = (south, west, north, east) else: self.swne = None # Generate openlayers.html if self.options.webviewer in ('all', 'openlayers'): if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))): with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f: f.write(self.generate_openlayers().encode('utf-8')) # Generate tilemapresource.xml. if not self.options.xyz and self.swne is not None and (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'tilemapresource.xml'))): with open(os.path.join(self.output_folder, 'tilemapresource.xml'), 'wb') as f: f.write(self.generate_tilemapresource().encode('utf-8')) # Generate mapml file if self.options.webviewer in ('all', 'mapml') and \ self.options.xyz and \ self.options.profile != 'raster' and \ (self.options.profile != 'geodetic' or self.options.tmscompatible) and \ (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'mapml.mapml'))): with open(os.path.join(self.output_folder, 'mapml.mapml'), 'wb') as f: f.write(self.generate_mapml().encode('utf-8')) if self.kml and self.tileswne is not None: # TODO: Maybe problem for not automatically generated tminz # The root KML should contain links to all tiles in the tminz level children = [] xmin, ymin, xmax, ymax = self.tminmax[self.tminz] for x in range(xmin, xmax + 1): for y in range(ymin, ymax + 1): children.append([x, y, self.tminz]) # Generate Root KML if self.kml: if (not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'doc.kml'))): with open(os.path.join(self.output_folder, 'doc.kml'), 'wb') as f: f.write(generate_kml( None, None, None, self.tileext, self.tile_size, self.tileswne, self.options, children ).encode('utf-8')) def generate_base_tiles(self): """ Generation of the base tiles (the lowest in the pyramid) directly from the input raster """ if not self.options.quiet: print("Generating Base Tiles:") if self.options.verbose: print('') print("Tiles generated from the max zoom level:") print("----------------------------------------") print('') # Set the bounds tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] ds = self.warped_input_dataset tilebands = self.dataBandsCount + 1 querysize = self.querysize if self.options.verbose: print("dataBandsCount: ", self.dataBandsCount) print("tilebands: ", tilebands) tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy)) ti = 0 tile_details = [] tz = self.tmaxz for ty in range(tmaxy, tminy - 1, -1): for tx in range(tminx, tmaxx + 1): ti += 1 ytile = GDAL2Tiles.getYTile(ty, tz, self.options) tilefilename = os.path.join( self.output_folder, str(tz), str(tx), "%s.%s" % (ytile, self.tileext)) if self.options.verbose: print(ti, '/', tcount, tilefilename) if self.options.resume and os.path.exists(tilefilename): if self.options.verbose: print("Tile generation skipped because of --resume") continue # Create directories for the tile if not os.path.exists(os.path.dirname(tilefilename)): os.makedirs(os.path.dirname(tilefilename)) if self.options.profile == 'mercator': # Tile bounds in EPSG:3857 b = self.mercator.TileBounds(tx, ty, tz) elif self.options.profile == 'geodetic': b = self.geodetic.TileBounds(tx, ty, tz) elif self.options.profile != 'raster': b = tmsMap[self.options.profile].TileBounds(tx, ty, tz, self.tile_size) # Don't scale up by nearest neighbour, better change the querysize # to the native resolution (and return smaller query tile) for scaling if self.options.profile != 'raster': rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1]) # Pixel size in the raster covering query geo extent nativesize = wb[0] + wb[2] if self.options.verbose: print("\tNative Extent (querysize", nativesize, "): ", rb, wb) # Tile bounds in raster coordinates for ReadRaster query rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1], querysize=querysize) rx, ry, rxsize, rysize = rb wx, wy, wxsize, wysize = wb else: # 'raster' profile: tsize = int(self.tsize[tz]) # tile_size in raster coordinates for actual zoom xsize = self.warped_input_dataset.RasterXSize # size of the raster in pixels ysize = self.warped_input_dataset.RasterYSize querysize = self.tile_size rx = tx * tsize rxsize = 0 if tx == tmaxx: rxsize = xsize % tsize if rxsize == 0: rxsize = tsize ry = ty * tsize rysize = 0 if ty == tmaxy: rysize = ysize % tsize if rysize == 0: rysize = tsize wx, wy = 0, 0 wxsize = int(rxsize / float(tsize) * self.tile_size) wysize = int(rysize / float(tsize) * self.tile_size) if not self.options.xyz: ry = ysize - (ty * tsize) - rysize if wysize != self.tile_size: wy = self.tile_size - wysize # Read the source raster if anything is going inside the tile as per the computed # geo_query tile_details.append( TileDetail( tx=tx, ty=ytile, tz=tz, rx=rx, ry=ry, rxsize=rxsize, rysize=rysize, wx=wx, wy=wy, wxsize=wxsize, wysize=wysize, querysize=querysize, ) ) conf = TileJobInfo( src_file=self.tmp_vrt_filename, nb_data_bands=self.dataBandsCount, output_file_path=self.output_folder, tile_extension=self.tileext, tile_driver=self.tiledriver, tile_size=self.tile_size, kml=self.kml, tminmax=self.tminmax, tminz=self.tminz, tmaxz=self.tmaxz, in_srs_wkt=self.in_srs_wkt, out_geo_trans=self.out_gt, ominy=self.ominy, is_epsg_4326=self.isepsg4326, options=self.options, exclude_transparent=self.options.exclude_transparent, ) return conf, tile_details def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0): """ For given dataset and query in cartographic coordinates returns parameters for ReadRaster() in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the extent is returned in the native resolution of dataset ds. raises Gdal2TilesError if the dataset does not contain anything inside this geo_query """ geotran = ds.GetGeoTransform() rx = int((ulx - geotran[0]) / geotran[1] + 0.001) ry = int((uly - geotran[3]) / geotran[5] + 0.001) rxsize = max(1, int((lrx - ulx) / geotran[1] + 0.5)) rysize = max(1, int((lry - uly) / geotran[5] + 0.5)) if not querysize: wxsize, wysize = rxsize, rysize else: wxsize, wysize = querysize, querysize # Coordinates should not go out of the bounds of the raster wx = 0 if rx < 0: rxshift = abs(rx) wx = int(wxsize * (float(rxshift) / rxsize)) wxsize = wxsize - wx rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize)) rx = 0 if rx + rxsize > ds.RasterXSize: wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize)) rxsize = ds.RasterXSize - rx wy = 0 if ry < 0: ryshift = abs(ry) wy = int(wysize * (float(ryshift) / rysize)) wysize = wysize - wy rysize = rysize - int(rysize * (float(ryshift) / rysize)) ry = 0 if ry + rysize > ds.RasterYSize: wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize)) rysize = ds.RasterYSize - ry return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize) def generate_tilemapresource(self): """ Template for tilemapresource.xml. Returns filled string. Expected variables: title, north, south, east, west, isepsg4326, projection, publishurl, zoompixels, tile_size, tileformat, profile """ args = {} args['title'] = self.options.title args['south'], args['west'], args['north'], args['east'] = self.swne args['tile_size'] = self.tile_size args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['profile'] = self.options.profile if self.options.profile == 'mercator': args['srs'] = "EPSG:3857" elif self.options.profile == 'geodetic': args['srs'] = "EPSG:4326" elif self.options.s_srs: args['srs'] = self.options.s_srs elif self.out_srs: args['srs'] = self.out_srs.ExportToWkt() else: args['srs'] = "" s = """ %(title)s %(srs)s """ % args # noqa for z in range(self.tminz, self.tmaxz + 1): if self.options.profile == 'raster': s += """ \n""" % ( args['publishurl'], z, (2**(self.nativezoom - z) * self.out_gt[1]), z) elif self.options.profile == 'mercator': s += """ \n""" % ( args['publishurl'], z, 156543.0339 / 2**z, z) elif self.options.profile == 'geodetic': s += """ \n""" % ( args['publishurl'], z, 0.703125 / 2**z, z) s += """ """ return s def generate_googlemaps(self): """ Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, googlemapskey, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl """ args = {} args['title'] = self.options.title args['googlemapskey'] = self.options.googlekey args['south'], args['west'], args['north'], args['east'] = self.swne args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tile_size'] = self.tile_size args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright s = r""" %(title)s
Generated by GDAL2Tiles, Copyright © 2008 Klokan Petr Pridal, GDAL & OSGeo GSoC
""" % args # noqa return s def generate_leaflet(self): """ Template for leaflet.html implementing overlay of tiles for 'mercator' profile. It returns filled string. Expected variables: title, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl """ args = {} args['title'] = self.options.title.replace('"', '\\"') args['htmltitle'] = self.options.title args['south'], args['west'], args['north'], args['east'] = self.swne args['centerlon'] = (args['north'] + args['south']) / 2. args['centerlat'] = (args['west'] + args['east']) / 2. args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['beginzoom'] = self.tmaxz args['tile_size'] = self.tile_size # not used args['tileformat'] = self.tileext args['publishurl'] = self.options.url # not used args['copyright'] = self.options.copyright.replace('"', '\\"') s = """ %(htmltitle)s
""" % args # noqa return s def generate_openlayers(self): """ Template for openlayers.html, with the tiles as overlays, and base layers. It returns filled string. """ args = {} args['title'] = self.options.title args['bingkey'] = self.options.bingkey args['minzoom'] = self.tminz args['maxzoom'] = self.tmaxz args['tile_size'] = self.tile_size args['tileformat'] = self.tileext args['publishurl'] = self.options.url args['copyright'] = self.options.copyright if self.options.xyz: args['sign_y'] = '' else: args['sign_y'] = '-' args['ominx'] = self.ominx args['ominy'] = self.ominy args['omaxx'] = self.omaxx args['omaxy'] = self.omaxy args['center_x'] = (self.ominx + self.omaxx) / 2 args['center_y'] = (self.ominy + self.omaxy) / 2 s = r""" %(title)s
Generated by GDAL2Tiles    
""" return s def generate_mapml(self): if self.options.mapml_template: template = self.options.mapml_template else: template = gdal.FindFile('gdal', 'template_tiles.mapml') s = open(template, 'rb').read().decode('utf-8') if self.options.profile == 'mercator': tiling_scheme = 'OSMTILE' elif self.options.profile == 'geodetic': tiling_scheme = 'WGS84' else: tiling_scheme = self.options.profile s = s.replace('${TILING_SCHEME}', tiling_scheme) s = s.replace('${URL}', self.options.url if self.options.url else "./") tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz] s = s.replace('${MINTILEX}', str(tminx)) s = s.replace('${MINTILEY}', str(GDAL2Tiles.getYTile(tmaxy, self.tmaxz, self.options))) s = s.replace('${MAXTILEX}', str(tmaxx)) s = s.replace('${MAXTILEY}', str(GDAL2Tiles.getYTile(tminy, self.tmaxz, self.options))) s = s.replace('${CURZOOM}', str(self.tmaxz)) s = s.replace('${MINZOOM}', str(self.tminz)) s = s.replace('${MAXZOOM}', str(self.tmaxz)) s = s.replace('${TILEEXT}', str(self.tileext)) return s @staticmethod def getYTile(ty, tz, options): """ Calculates the y-tile number based on whether XYZ or TMS (default) system is used :param ty: The y-tile number :param tz: The z-tile number :return: The transformed y-tile number """ if options.xyz and options.profile != 'raster': if options.profile in ('mercator', 'geodetic'): return (2**tz - 1) - ty # Convert from TMS to XYZ numbering system tms = tmsMap[options.profile] return (tms.matrix_height * 2**tz - 1) - ty # Convert from TMS to XYZ numbering system return ty def worker_tile_details(input_file, output_folder, options): gdal2tiles = GDAL2Tiles(input_file, output_folder, options) gdal2tiles.open_input() gdal2tiles.generate_metadata() tile_job_info, tile_details = gdal2tiles.generate_base_tiles() return tile_job_info, tile_details class ProgressBar(object): def __init__(self, total_items): self.total_items = total_items self.nb_items_done = 0 self.current_progress = 0 self.STEP = 2.5 def start(self): sys.stdout.write("0") def log_progress(self, nb_items=1): self.nb_items_done += nb_items progress = float(self.nb_items_done) / self.total_items * 100 if progress >= self.current_progress + self.STEP: done = False while not done: if self.current_progress + self.STEP <= progress: self.current_progress += self.STEP if self.current_progress % 10 == 0: sys.stdout.write(str(int(self.current_progress))) if self.current_progress == 100: sys.stdout.write("\n") else: sys.stdout.write(".") else: done = True sys.stdout.flush() def get_tile_swne(tile_job_info, options): if options.profile == 'mercator': mercator = GlobalMercator() tile_swne = mercator.TileLatLonBounds elif options.profile == 'geodetic': geodetic = GlobalGeodetic(options.tmscompatible) tile_swne = geodetic.TileLatLonBounds elif options.profile == 'raster': srs4326 = osr.SpatialReference() srs4326.ImportFromEPSG(4326) srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) if tile_job_info.kml and tile_job_info.in_srs_wkt: in_srs = osr.SpatialReference() in_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) in_srs.ImportFromWkt(tile_job_info.in_srs_wkt) ct = osr.CoordinateTransformation(in_srs, srs4326) def rastertileswne(x, y, z): pixelsizex = (2 ** (tile_job_info.tmaxz - z) * tile_job_info.out_geo_trans[1]) west = tile_job_info.out_geo_trans[0] + x * tile_job_info.tile_size * pixelsizex east = west + tile_job_info.tile_size * pixelsizex if options.xyz: north = tile_job_info.out_geo_trans[3] - y * tile_job_info.tile_size * pixelsizex south = north - tile_job_info.tile_size * pixelsizex else: south = tile_job_info.ominy + y * tile_job_info.tile_size * pixelsizex north = south + tile_job_info.tile_size * pixelsizex if not tile_job_info.is_epsg_4326: # Transformation to EPSG:4326 (WGS84 datum) west, south = ct.TransformPoint(west, south)[:2] east, north = ct.TransformPoint(east, north)[:2] return south, west, north, east tile_swne = rastertileswne else: tile_swne = lambda x, y, z: (0, 0, 0, 0) # noqa else: tile_swne = None return tile_swne def single_threaded_tiling(input_file, output_folder, options): """ Keep a single threaded version that stays clear of multiprocessing, for platforms that would not support it """ if options.verbose: print("Begin tiles details calc") conf, tile_details = worker_tile_details(input_file, output_folder, options) if options.verbose: print("Tiles details calc complete.") if not options.verbose and not options.quiet: progress_bar = ProgressBar(len(tile_details)) progress_bar.start() for tile_detail in tile_details: create_base_tile(conf, tile_detail) if not options.verbose and not options.quiet: progress_bar.log_progress() if getattr(threadLocal, 'cached_ds', None): del threadLocal.cached_ds create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file)) def multi_threaded_tiling(input_file, output_folder, options): nb_processes = options.nb_processes or 1 # Make sure that all processes do not consume more than `gdal.GetCacheMax()` gdal_cache_max = gdal.GetCacheMax() gdal_cache_max_per_process = max(1024 * 1024, math.floor(gdal_cache_max / nb_processes)) set_cache_max(gdal_cache_max_per_process) pool = Pool(processes=nb_processes) if options.verbose: print("Begin tiles details calc") conf, tile_details = worker_tile_details(input_file, output_folder, options) if options.verbose: print("Tiles details calc complete.") if not options.verbose and not options.quiet: progress_bar = ProgressBar(len(tile_details)) progress_bar.start() # TODO: gbataille - check the confs for which each element is an array... one useless level? # TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..." for _ in pool.imap_unordered(partial(create_base_tile, conf), tile_details, chunksize=128): if not options.verbose and not options.quiet: progress_bar.log_progress() pool.close() pool.join() # Jobs finished # Set the maximum cache back to the original value set_cache_max(gdal_cache_max) create_overview_tiles(conf, output_folder, options) shutil.rmtree(os.path.dirname(conf.src_file)) def main(argv): # TODO: gbataille - use mkdtemp to work in a temp directory # TODO: gbataille - debug intermediate tiles.vrt not produced anymore? # TODO: gbataille - Refactor generate overview tiles to not depend on self variables # For multiprocessing, we need to propagate the configuration options to # the environment, so that forked processes can inherit them. for i in range(len(argv)): if argv[i] == '--config' and i + 2 < len(argv): os.environ[argv[i+1]] = argv[i+2] argv = gdal.GeneralCmdLineProcessor(argv) if argv is None: return input_file, output_folder, options = process_args(argv[1:]) nb_processes = options.nb_processes or 1 if nb_processes == 1: single_threaded_tiling(input_file, output_folder, options) else: multi_threaded_tiling(input_file, output_folder, options) # vim: set tabstop=4 shiftwidth=4 expandtab: if __name__ == '__main__': sys.exit(main(sys.argv))