from __future__ import annotations import os import urllib.request import warnings from io import IOBase from packaging.version import Version from pathlib import Path # Adapted from pandas.io.common from urllib.parse import urlparse as parse_url from urllib.parse import uses_netloc, uses_params, uses_relative import numpy as np import pandas as pd from pandas.api.types import is_integer_dtype import shapely from shapely.geometry import mapping from shapely.geometry.base import BaseGeometry from geopandas import GeoDataFrame, GeoSeries from geopandas._compat import HAS_PYPROJ, PANDAS_GE_20 from geopandas.io.util import vsi_path _VALID_URLS = set(uses_relative + uses_netloc + uses_params) _VALID_URLS.discard("") # file:// URIs are supported by fiona/pyogrio -> don't already open + read the file here _VALID_URLS.discard("file") fiona = None fiona_env = None fiona_import_error = None FIONA_GE_19 = False def _import_fiona(): global fiona global fiona_env global fiona_import_error global FIONA_GE_19 if fiona is None: try: import fiona # only try to import fiona.Env if the main fiona import succeeded # (otherwise you can get confusing "AttributeError: module 'fiona' # has no attribute '_loading'" / partially initialized module errors) try: from fiona import Env as fiona_env except ImportError: try: from fiona import drivers as fiona_env except ImportError: fiona_env = None FIONA_GE_19 = Version(Version(fiona.__version__).base_version) >= Version( "1.9.0" ) except ImportError as err: fiona = False fiona_import_error = str(err) pyogrio = None pyogrio_import_error = None def _import_pyogrio(): global pyogrio global pyogrio_import_error if pyogrio is None: try: import pyogrio except ImportError as err: pyogrio = False pyogrio_import_error = str(err) def _check_fiona(func): if not fiona: raise ImportError( f"the {func} requires the 'fiona' package, but it is not installed or does " f"not import correctly.\nImporting fiona resulted in: {fiona_import_error}" ) def _check_pyogrio(func): if not pyogrio: raise ImportError( f"the {func} requires the 'pyogrio' package, but it is not installed " "or does not import correctly." "\nImporting pyogrio resulted in: {pyogrio_import_error}" ) def _check_metadata_supported(metadata: str | None, engine: str, driver: str) -> None: if metadata is None: return if driver != "GPKG": raise NotImplementedError( "The 'metadata' keyword is only supported for the GPKG driver." ) if engine == "fiona" and not FIONA_GE_19: raise NotImplementedError( "The 'metadata' keyword is only supported for Fiona >= 1.9." ) def _check_engine(engine, func): # if not specified through keyword or option, then default to "pyogrio" if # installed, otherwise try fiona if engine is None: import geopandas engine = geopandas.options.io_engine if engine is None: _import_pyogrio() if pyogrio: engine = "pyogrio" else: _import_fiona() if fiona: engine = "fiona" if engine == "pyogrio": _import_pyogrio() _check_pyogrio(func) elif engine == "fiona": _import_fiona() _check_fiona(func) elif engine is None: raise ImportError( f"The {func} requires the 'pyogrio' or 'fiona' package, " "but neither is installed or imports correctly." f"\nImporting pyogrio resulted in: {pyogrio_import_error}" f"\nImporting fiona resulted in: {fiona_import_error}" ) return engine _EXTENSION_TO_DRIVER = { ".bna": "BNA", ".dxf": "DXF", ".csv": "CSV", ".shp": "ESRI Shapefile", ".dbf": "ESRI Shapefile", ".json": "GeoJSON", ".geojson": "GeoJSON", ".geojsonl": "GeoJSONSeq", ".geojsons": "GeoJSONSeq", ".gpkg": "GPKG", ".gml": "GML", ".xml": "GML", ".gpx": "GPX", ".gtm": "GPSTrackMaker", ".gtz": "GPSTrackMaker", ".tab": "MapInfo File", ".mif": "MapInfo File", ".mid": "MapInfo File", ".dgn": "DGN", ".fgb": "FlatGeobuf", } def _expand_user(path): """Expand paths that use ~.""" if isinstance(path, str): path = os.path.expanduser(path) elif isinstance(path, Path): path = path.expanduser() return path def _is_url(url): """Check to see if *url* has a valid protocol.""" try: return parse_url(url).scheme in _VALID_URLS except Exception: return False def _read_file( filename, bbox=None, mask=None, columns=None, rows=None, engine=None, **kwargs ): """ Returns a GeoDataFrame from a file or URL. Parameters ---------- filename : str, path object or file-like object Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO) bbox : tuple | GeoDataFrame or GeoSeries | shapely Geometry, default None Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. With engine="fiona", CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. With engine="pyogrio", bbox must be in the same CRS as the dataset. Tuple is (minx, miny, maxx, maxy) to match the bounds property of shapely geometry objects. Cannot be used with mask. mask : dict | GeoDataFrame or GeoSeries | shapely Geometry, default None Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. If multiple geometries are passed, this will first union all geometries, which may be computationally expensive. columns : list, optional List of column names to import from the data source. Column names must exactly match the names in the data source. To avoid reading any columns (besides the geometry column), pass an empty list-like. By default reads all columns. rows : int or slice, default None Load in specific rows by passing an integer (first `n` rows) or a slice() object. engine : str, "pyogrio" or "fiona" The underlying library that is used to read the file. Currently, the supported options are "pyogrio" and "fiona". Defaults to "pyogrio" if installed, otherwise tries "fiona". Engine can also be set globally with the ``geopandas.options.io_engine`` option. **kwargs : Keyword args to be passed to the engine, and can be used to write to multi-layer data, store data within archives (zip files), etc. In case of the "pyogrio" engine, the keyword arguments are passed to `pyogrio.write_dataframe`. In case of the "fiona" engine, the keyword arguments are passed to fiona.open`. For more information on possible keywords, type: ``import pyogrio; help(pyogrio.write_dataframe)``. Examples -------- >>> df = geopandas.read_file("nybb.shp") # doctest: +SKIP Specifying layer of GPKG: >>> df = geopandas.read_file("file.gpkg", layer='cities') # doctest: +SKIP Reading only first 10 rows: >>> df = geopandas.read_file("nybb.shp", rows=10) # doctest: +SKIP Reading only geometries intersecting ``mask``: >>> df = geopandas.read_file("nybb.shp", mask=polygon) # doctest: +SKIP Reading only geometries intersecting ``bbox``: >>> df = geopandas.read_file("nybb.shp", bbox=(0, 0, 10, 20)) # doctest: +SKIP Returns ------- :obj:`geopandas.GeoDataFrame` or :obj:`pandas.DataFrame` : If `ignore_geometry=True` a :obj:`pandas.DataFrame` will be returned. Notes ----- The format drivers will attempt to detect the encoding of your data, but may fail. In this case, the proper encoding can be specified explicitly by using the encoding keyword parameter, e.g. ``encoding='utf-8'``. When specifying a URL, geopandas will check if the server supports reading partial data and in that case pass the URL as is to the underlying engine, which will then use the network file system handler of GDAL to read from the URL. Otherwise geopandas will download the data from the URL and pass all data in-memory to the underlying engine. If you need more control over how the URL is read, you can specify the GDAL virtual filesystem manually (e.g. ``/vsicurl/https://...``). See the GDAL documentation on filesystems for more details (https://gdal.org/user/virtual_file_systems.html#vsicurl-http-https-ftp-files-random-access). """ engine = _check_engine(engine, "'read_file' function") filename = _expand_user(filename) from_bytes = False if _is_url(filename): # if it is a url that supports random access -> pass through to # pyogrio/fiona as is (to support downloading only part of the file) # otherwise still download manually because pyogrio/fiona don't support # all types of urls (https://github.com/geopandas/geopandas/issues/2908) with urllib.request.urlopen(filename) as response: if not response.headers.get("Accept-Ranges") == "bytes": filename = response.read() from_bytes = True if engine == "pyogrio": return _read_file_pyogrio( filename, bbox=bbox, mask=mask, columns=columns, rows=rows, **kwargs ) elif engine == "fiona": if pd.api.types.is_file_like(filename): data = filename.read() path_or_bytes = data.encode("utf-8") if isinstance(data, str) else data from_bytes = True else: path_or_bytes = filename return _read_file_fiona( path_or_bytes, from_bytes, bbox=bbox, mask=mask, columns=columns, rows=rows, **kwargs, ) else: raise ValueError(f"unknown engine '{engine}'") def _read_file_fiona( path_or_bytes, from_bytes, bbox=None, mask=None, columns=None, rows=None, where=None, **kwargs, ): if where is not None and not FIONA_GE_19: raise NotImplementedError("where requires fiona 1.9+") if columns is not None: if "include_fields" in kwargs: raise ValueError( "Cannot specify both 'include_fields' and 'columns' keywords" ) if not FIONA_GE_19: raise NotImplementedError("'columns' keyword requires fiona 1.9+") kwargs["include_fields"] = columns elif "include_fields" in kwargs: # alias to columns, as this variable is used below to specify column order # in the dataframe creation columns = kwargs["include_fields"] if not from_bytes: # Opening a file via URL or file-like-object above automatically detects a # zipped file. In order to match that behavior, attempt to add a zip scheme # if missing. path_or_bytes = vsi_path(str(path_or_bytes)) if from_bytes: reader = fiona.BytesCollection else: reader = fiona.open with fiona_env(): with reader(path_or_bytes, **kwargs) as features: crs = features.crs_wkt # attempt to get EPSG code try: # fiona 1.9+ epsg = features.crs.to_epsg(confidence_threshold=100) if epsg is not None: crs = epsg except AttributeError: # fiona <= 1.8 try: crs = features.crs["init"] except (TypeError, KeyError): pass # handle loading the bounding box if bbox is not None: if isinstance(bbox, (GeoDataFrame, GeoSeries)): bbox = tuple(bbox.to_crs(crs).total_bounds) elif isinstance(bbox, BaseGeometry): bbox = bbox.bounds assert len(bbox) == 4 # handle loading the mask elif isinstance(mask, (GeoDataFrame, GeoSeries)): mask = mapping(mask.to_crs(crs).union_all()) elif isinstance(mask, BaseGeometry): mask = mapping(mask) filters = {} if bbox is not None: filters["bbox"] = bbox if mask is not None: filters["mask"] = mask if where is not None: filters["where"] = where # setup the data loading filter if rows is not None: if isinstance(rows, int): rows = slice(rows) elif not isinstance(rows, slice): raise TypeError("'rows' must be an integer or a slice.") f_filt = features.filter(rows.start, rows.stop, rows.step, **filters) elif filters: f_filt = features.filter(**filters) else: f_filt = features # get list of columns columns = columns or list(features.schema["properties"]) datetime_fields = [ k for (k, v) in features.schema["properties"].items() if v == "datetime" ] if ( kwargs.get("ignore_geometry", False) or features.schema["geometry"] == "None" ): df = pd.DataFrame( [record["properties"] for record in f_filt], columns=columns ) else: df = GeoDataFrame.from_features( f_filt, crs=crs, columns=columns + ["geometry"] ) for k in datetime_fields: as_dt = None # plain try catch for when pandas will raise in the future # TODO we can tighten the exception type in future when it does try: with warnings.catch_warnings(): # pandas 2.x does not yet enforce this behaviour but raises a # warning -> we want to to suppress this warning for our users, # and do this by turning it into an error so we take the # `except` code path to try again with utc=True warnings.filterwarnings( "error", "In a future version of pandas, parsing datetimes with " "mixed time zones will raise an error", FutureWarning, ) as_dt = pd.to_datetime(df[k]) except Exception: pass if as_dt is None or as_dt.dtype == "object": # if to_datetime failed, try again for mixed timezone offsets # This can still fail if there are invalid datetimes try: as_dt = pd.to_datetime(df[k], utc=True) except Exception: pass # if to_datetime succeeded, round datetimes as # fiona only supports up to ms precision (any microseconds are # floating point rounding error) if as_dt is not None and not (as_dt.dtype == "object"): if PANDAS_GE_20: df[k] = as_dt.dt.as_unit("ms") else: df[k] = as_dt.dt.round(freq="ms") return df def _read_file_pyogrio(path_or_bytes, bbox=None, mask=None, rows=None, **kwargs): import pyogrio if rows is not None: if isinstance(rows, int): kwargs["max_features"] = rows elif isinstance(rows, slice): if rows.start is not None: if rows.start < 0: raise ValueError( "Negative slice start not supported with the 'pyogrio' engine." ) kwargs["skip_features"] = rows.start if rows.stop is not None: kwargs["max_features"] = rows.stop - (rows.start or 0) if rows.step is not None: raise ValueError("slice with step is not supported") else: raise TypeError("'rows' must be an integer or a slice.") if bbox is not None and mask is not None: # match error message from Fiona raise ValueError("mask and bbox can not be set together") if bbox is not None: if isinstance(bbox, (GeoDataFrame, GeoSeries)): crs = pyogrio.read_info(path_or_bytes).get("crs") if isinstance(path_or_bytes, IOBase): path_or_bytes.seek(0) bbox = tuple(bbox.to_crs(crs).total_bounds) elif isinstance(bbox, BaseGeometry): bbox = bbox.bounds if len(bbox) != 4: raise ValueError("'bbox' should be a length-4 tuple.") if mask is not None: # NOTE: mask cannot be used at same time as bbox keyword if isinstance(mask, (GeoDataFrame, GeoSeries)): crs = pyogrio.read_info(path_or_bytes).get("crs") if isinstance(path_or_bytes, IOBase): path_or_bytes.seek(0) mask = shapely.unary_union(mask.to_crs(crs).geometry.values) elif isinstance(mask, BaseGeometry): mask = shapely.unary_union(mask) elif isinstance(mask, dict) or hasattr(mask, "__geo_interface__"): # convert GeoJSON to shapely geometry mask = shapely.geometry.shape(mask) kwargs["mask"] = mask if kwargs.pop("ignore_geometry", False): kwargs["read_geometry"] = False # translate `ignore_fields`/`include_fields` keyword for back compat with fiona if "ignore_fields" in kwargs and "include_fields" in kwargs: raise ValueError("Cannot specify both 'ignore_fields' and 'include_fields'") elif "ignore_fields" in kwargs: if kwargs.get("columns", None) is not None: raise ValueError( "Cannot specify both 'columns' and 'ignore_fields' keywords" ) warnings.warn( "The 'include_fields' and 'ignore_fields' keywords are deprecated, and " "will be removed in a future release. You can use the 'columns' keyword " "instead to select which columns to read.", DeprecationWarning, stacklevel=3, ) ignore_fields = kwargs.pop("ignore_fields") fields = pyogrio.read_info(path_or_bytes)["fields"] include_fields = [col for col in fields if col not in ignore_fields] kwargs["columns"] = include_fields elif "include_fields" in kwargs: # translate `include_fields` keyword for back compat with fiona engine if kwargs.get("columns", None) is not None: raise ValueError( "Cannot specify both 'columns' and 'include_fields' keywords" ) warnings.warn( "The 'include_fields' and 'ignore_fields' keywords are deprecated, and " "will be removed in a future release. You can use the 'columns' keyword " "instead to select which columns to read.", DeprecationWarning, stacklevel=3, ) kwargs["columns"] = kwargs.pop("include_fields") return pyogrio.read_dataframe(path_or_bytes, bbox=bbox, **kwargs) def _detect_driver(path): """ Attempt to auto-detect driver based on the extension """ try: # in case the path is a file handle path = path.name except AttributeError: pass try: return _EXTENSION_TO_DRIVER[Path(path).suffix.lower()] except KeyError: # Assume it is a shapefile folder for now. In the future, # will likely raise an exception when the expected # folder writing behavior is more clearly defined. return "ESRI Shapefile" def _to_file( df, filename, driver=None, schema=None, index=None, mode="w", crs=None, engine=None, metadata=None, **kwargs, ): """ Write this GeoDataFrame to an OGR data source A dictionary of supported OGR providers is available via: >>> import pyogrio >>> pyogrio.list_drivers() # doctest: +SKIP Parameters ---------- df : GeoDataFrame to be written filename : string File path or file handle to write to. The path may specify a GDAL VSI scheme. driver : string, default None The OGR format driver used to write the vector file. If not specified, it attempts to infer it from the file extension. If no extension is specified, it saves ESRI Shapefile to a folder. schema : dict, default None If specified, the schema dictionary is passed to Fiona to better control how the file is written. If None, GeoPandas will determine the schema based on each column's dtype. Not supported for the "pyogrio" engine. index : bool, default None If True, write index into one or more columns (for MultiIndex). Default None writes the index into one or more columns only if the index is named, is a MultiIndex, or has a non-integer data type. If False, no index is written. .. versionadded:: 0.7 Previously the index was not written. mode : string, default 'w' The write mode, 'w' to overwrite the existing file and 'a' to append; when using the pyogrio engine, you can also pass ``append=True``. Not all drivers support appending. For the fiona engine, the drivers that support appending are listed in fiona.supported_drivers or https://github.com/Toblerity/Fiona/blob/master/fiona/drvsupport.py. For the pyogrio engine, you should be able to use any driver that is available in your installation of GDAL that supports append capability; see the specific driver entry at https://gdal.org/drivers/vector/index.html for more information. crs : pyproj.CRS, default None If specified, the CRS is passed to Fiona to better control how the file is written. If None, GeoPandas will determine the crs based on crs df attribute. The value can be anything accepted by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`, such as an authority string (eg "EPSG:4326") or a WKT string. engine : str, "pyogrio" or "fiona" The underlying library that is used to read the file. Currently, the supported options are "pyogrio" and "fiona". Defaults to "pyogrio" if installed, otherwise tries "fiona". Engine can also be set globally with the ``geopandas.options.io_engine`` option. metadata : dict[str, str], default None Optional metadata to be stored in the file. Keys and values must be strings. Only supported for the "GPKG" driver (requires Fiona >= 1.9 or pyogrio >= 0.6). **kwargs : Keyword args to be passed to the engine, and can be used to write to multi-layer data, store data within archives (zip files), etc. In case of the "fiona" engine, the keyword arguments are passed to fiona.open`. For more information on possible keywords, type: ``import fiona; help(fiona.open)``. In case of the "pyogrio" engine, the keyword arguments are passed to `pyogrio.write_dataframe`. Notes ----- The format drivers will attempt to detect the encoding of your data, but may fail. In this case, the proper encoding can be specified explicitly by using the encoding keyword parameter, e.g. ``encoding='utf-8'``. """ engine = _check_engine(engine, "'to_file' method") filename = _expand_user(filename) if index is None: # Determine if index attribute(s) should be saved to file # (only if they are named or are non-integer) index = list(df.index.names) != [None] or not is_integer_dtype(df.index.dtype) if index: df = df.reset_index(drop=False) if driver is None: driver = _detect_driver(filename) if driver == "ESRI Shapefile" and any(len(c) > 10 for c in df.columns.tolist()): warnings.warn( "Column names longer than 10 characters will be truncated when saved to " "ESRI Shapefile.", stacklevel=3, ) if (df.dtypes == "geometry").sum() > 1: raise ValueError( "GeoDataFrame contains multiple geometry columns but GeoDataFrame.to_file " "supports only a single geometry column. Use a GeoDataFrame.to_parquet or " "GeoDataFrame.to_feather, drop additional geometry columns or convert them " "to a supported format like a well-known text (WKT) using " "`GeoSeries.to_wkt()`.", ) _check_metadata_supported(metadata, engine, driver) if mode not in ("w", "a"): raise ValueError(f"'mode' should be one of 'w' or 'a', got '{mode}' instead") if engine == "pyogrio": _to_file_pyogrio(df, filename, driver, schema, crs, mode, metadata, **kwargs) elif engine == "fiona": _to_file_fiona(df, filename, driver, schema, crs, mode, metadata, **kwargs) else: raise ValueError(f"unknown engine '{engine}'") def _to_file_fiona(df, filename, driver, schema, crs, mode, metadata, **kwargs): if not HAS_PYPROJ and crs: raise ImportError( "The 'pyproj' package is required to write a file with a CRS, but it is not" " installed or does not import correctly." ) if schema is None: schema = infer_schema(df) if crs: from pyproj import CRS crs = CRS.from_user_input(crs) else: crs = df.crs with fiona_env(): crs_wkt = None try: gdal_version = Version( fiona.env.get_gdal_release_name().strip("e") ) # GH3147 except (AttributeError, ValueError): gdal_version = Version("2.0.0") # just assume it is not the latest if gdal_version >= Version("3.0.0") and crs: crs_wkt = crs.to_wkt() elif crs: crs_wkt = crs.to_wkt("WKT1_GDAL") with fiona.open( filename, mode=mode, driver=driver, crs_wkt=crs_wkt, schema=schema, **kwargs ) as colxn: if metadata is not None: colxn.update_tags(metadata) colxn.writerecords(df.iterfeatures()) def _to_file_pyogrio(df, filename, driver, schema, crs, mode, metadata, **kwargs): import pyogrio if schema is not None: raise ValueError( "The 'schema' argument is not supported with the 'pyogrio' engine." ) if mode == "a": kwargs["append"] = True if crs is not None: raise ValueError("Passing 'crs' is not supported with the 'pyogrio' engine.") # for the fiona engine, this check is done in gdf.iterfeatures() if not df.columns.is_unique: raise ValueError("GeoDataFrame cannot contain duplicated column names.") pyogrio.write_dataframe(df, filename, driver=driver, metadata=metadata, **kwargs) def infer_schema(df): from collections import OrderedDict # TODO: test pandas string type and boolean type once released types = { "Int32": "int32", "int32": "int32", "Int64": "int", "string": "str", "boolean": "bool", } def convert_type(column, in_type): if in_type == object: return "str" if in_type.name.startswith("datetime64"): # numpy datetime type regardless of frequency return "datetime" if str(in_type) in types: out_type = types[str(in_type)] else: out_type = type(np.zeros(1, in_type).item()).__name__ if out_type == "long": out_type = "int" return out_type properties = OrderedDict( [ (col, convert_type(col, _type)) for col, _type in zip(df.columns, df.dtypes) if col != df._geometry_column_name ] ) if df.empty: warnings.warn( "You are attempting to write an empty DataFrame to file. " "For some drivers, this operation may fail.", UserWarning, stacklevel=3, ) # Since https://github.com/Toblerity/Fiona/issues/446 resolution, # Fiona allows a list of geometry types geom_types = _geometry_types(df) schema = {"geometry": geom_types, "properties": properties} return schema def _geometry_types(df): """ Determine the geometry types in the GeoDataFrame for the schema. """ geom_types_2D = df[~df.geometry.has_z].geometry.geom_type.unique() geom_types_2D = [gtype for gtype in geom_types_2D if gtype is not None] geom_types_3D = df[df.geometry.has_z].geometry.geom_type.unique() geom_types_3D = ["3D " + gtype for gtype in geom_types_3D if gtype is not None] geom_types = geom_types_3D + geom_types_2D if len(geom_types) == 0: # Default geometry type supported by Fiona # (Since https://github.com/Toblerity/Fiona/issues/446 resolution) return "Unknown" if len(geom_types) == 1: geom_types = geom_types[0] return geom_types def _list_layers(filename) -> pd.DataFrame: """List layers available in a file. Provides an overview of layers available in a file or URL together with their geometry types. When supported by the data source, this includes both spatial and non-spatial layers. Non-spatial layers are indicated by the ``"geometry_type"`` column being ``None``. GeoPandas will not read such layers but they can be read into a pd.DataFrame using :func:`pyogrio.read_dataframe`. Parameters ---------- filename : str, path object or file-like object Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO) Returns ------- pandas.DataFrame A DataFrame with columns "name" and "geometry_type" and one row per layer. """ _import_pyogrio() _check_pyogrio("list_layers") import pyogrio return pd.DataFrame( pyogrio.list_layers(filename), columns=["name", "geometry_type"] )