from __future__ import annotations

import platform
import sys
from typing import TYPE_CHECKING
from typing import Any
from typing import Iterable
from typing import Literal
from typing import Protocol
from typing import TypeVar
from typing import Union

from narwhals._pandas_like.utils import validate_column_comparand
from narwhals.dataframe import DataFrame
from narwhals.dataframe import LazyFrame
from narwhals.translate import from_native
from narwhals.utils import Implementation
from narwhals.utils import parse_version
from narwhals.utils import validate_laziness

# Missing type parameters for generic type "DataFrame"
# However, trying to provide one results in mypy still complaining...
# The rest of the annotations seem to work fine with this anyway
FrameT = TypeVar("FrameT", bound=Union[DataFrame, LazyFrame])  # type: ignore[type-arg]


if TYPE_CHECKING:
    from types import ModuleType

    import numpy as np

    from narwhals.dtypes import DType
    from narwhals.schema import Schema
    from narwhals.series import Series
    from narwhals.typing import DTypes
    from narwhals.typing import IntoSeriesT

    class ArrowStreamExportable(Protocol):
        def __arrow_c_stream__(
            self, requested_schema: object | None = None
        ) -> object: ...


def concat(
    items: Iterable[FrameT],
    *,
    how: Literal["horizontal", "vertical", "diagonal"] = "vertical",
) -> FrameT:
    """Concatenate multiple DataFrames, LazyFrames into a single entity.

    Arguments:
        items: DataFrames, LazyFrames to concatenate.
        how: concatenating strategy:

            - vertical: Concatenate vertically. Column names must match.
            - horizontal: Concatenate horizontally. If lengths don't match, then
                missing rows are filled with null values.
            - diagonal: Finds a union between the column schemas and fills missing column
                values with null.

    Returns:
        A new DataFrame, Lazyframe resulting from the concatenation.

    Raises:
        NotImplementedError: The items to concatenate should either all be eager, or all lazy

    Examples:
        Let's take an example of vertical concatenation:

        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> data_1 = {"a": [1, 2, 3], "b": [4, 5, 6]}
        >>> data_2 = {"a": [5, 2], "b": [1, 4]}

        >>> df_pd_1 = pd.DataFrame(data_1)
        >>> df_pd_2 = pd.DataFrame(data_2)
        >>> df_pl_1 = pl.DataFrame(data_1)
        >>> df_pl_2 = pl.DataFrame(data_2)

        Let's define a dataframe-agnostic function:

        >>> @nw.narwhalify
        ... def agnostic_vertical_concat(df1, df2):
        ...     return nw.concat([df1, df2], how="vertical")

        >>> agnostic_vertical_concat(df_pd_1, df_pd_2)
           a  b
        0  1  4
        1  2  5
        2  3  6
        0  5  1
        1  2  4
        >>> agnostic_vertical_concat(df_pl_1, df_pl_2)
        shape: (5, 2)
        ┌─────┬─────┐
        │ a   ┆ b   │
        │ --- ┆ --- │
        │ i64 ┆ i64 │
        ╞═════╪═════╡
        │ 1   ┆ 4   │
        │ 2   ┆ 5   │
        │ 3   ┆ 6   │
        │ 5   ┆ 1   │
        │ 2   ┆ 4   │
        └─────┴─────┘

        Let's look at case a for horizontal concatenation:

        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> data_1 = {"a": [1, 2, 3], "b": [4, 5, 6]}
        >>> data_2 = {"c": [5, 2], "d": [1, 4]}

        >>> df_pd_1 = pd.DataFrame(data_1)
        >>> df_pd_2 = pd.DataFrame(data_2)
        >>> df_pl_1 = pl.DataFrame(data_1)
        >>> df_pl_2 = pl.DataFrame(data_2)

        Defining a dataframe-agnostic function:

        >>> @nw.narwhalify
        ... def agnostic_horizontal_concat(df1, df2):
        ...     return nw.concat([df1, df2], how="horizontal")

        >>> agnostic_horizontal_concat(df_pd_1, df_pd_2)
           a  b    c    d
        0  1  4  5.0  1.0
        1  2  5  2.0  4.0
        2  3  6  NaN  NaN

        >>> agnostic_horizontal_concat(df_pl_1, df_pl_2)
        shape: (3, 4)
        ┌─────┬─────┬──────┬──────┐
        │ a   ┆ b   ┆ c    ┆ d    │
        │ --- ┆ --- ┆ ---  ┆ ---  │
        │ i64 ┆ i64 ┆ i64  ┆ i64  │
        ╞═════╪═════╪══════╪══════╡
        │ 1   ┆ 4   ┆ 5    ┆ 1    │
        │ 2   ┆ 5   ┆ 2    ┆ 4    │
        │ 3   ┆ 6   ┆ null ┆ null │
        └─────┴─────┴──────┴──────┘

        Let's look at case a for diagonal concatenation:

        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> data_1 = {"a": [1, 2], "b": [3.5, 4.5]}
        >>> data_2 = {"a": [3, 4], "z": ["x", "y"]}

        >>> df_pd_1 = pd.DataFrame(data_1)
        >>> df_pd_2 = pd.DataFrame(data_2)
        >>> df_pl_1 = pl.DataFrame(data_1)
        >>> df_pl_2 = pl.DataFrame(data_2)

        Defining a dataframe-agnostic function:

        >>> @nw.narwhalify
        ... def agnostic_diagonal_concat(df1, df2):
        ...     return nw.concat([df1, df2], how="diagonal")

        >>> agnostic_diagonal_concat(df_pd_1, df_pd_2)
           a    b    z
        0  1  3.5  NaN
        1  2  4.5  NaN
        0  3  NaN    x
        1  4  NaN    y

        >>> agnostic_diagonal_concat(df_pl_1, df_pl_2)
        shape: (4, 3)
        ┌─────┬──────┬──────┐
        │ a   ┆ b    ┆ z    │
        │ --- ┆ ---  ┆ ---  │
        │ i64 ┆ f64  ┆ str  │
        ╞═════╪══════╪══════╡
        │ 1   ┆ 3.5  ┆ null │
        │ 2   ┆ 4.5  ┆ null │
        │ 3   ┆ null ┆ x    │
        │ 4   ┆ null ┆ y    │
        └─────┴──────┴──────┘
    """
    if how not in {"horizontal", "vertical", "diagonal"}:  # pragma: no cover
        msg = "Only vertical, horizontal and diagonal concatenations are supported."
        raise NotImplementedError(msg)
    if not items:
        msg = "No items to concatenate"
        raise ValueError(msg)
    items = list(items)
    validate_laziness(items)
    first_item = items[0]
    plx = first_item.__narwhals_namespace__()
    return first_item._from_compliant_dataframe(  # type: ignore[return-value]
        plx.concat([df._compliant_frame for df in items], how=how),
    )


def new_series(
    name: str,
    values: Any,
    dtype: DType | type[DType] | None = None,
    *,
    native_namespace: ModuleType,
) -> Series[Any]:
    """Instantiate Narwhals Series from iterable (e.g. list or array).

    Arguments:
        name: Name of resulting Series.
        values: Values of make Series from.
        dtype: (Narwhals) dtype. If not provided, the native library
            may auto-infer it from `values`.
        native_namespace: The native library to use for DataFrame creation.

    Returns:
        A new Series

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import narwhals as nw
        >>> data = {"a": [1, 2, 3], "b": [4, 5, 6]}

        Let's define a dataframe-agnostic function:

        >>> @nw.narwhalify
        ... def func(df):
        ...     values = [4, 1, 2]
        ...     native_namespace = nw.get_native_namespace(df)
        ...     return nw.new_series(
        ...         name="c",
        ...         values=values,
        ...         dtype=nw.Int32,
        ...         native_namespace=native_namespace,
        ...     )

        Let's see what happens when passing pandas / Polars input:

        >>> func(pd.DataFrame(data))
        0    4
        1    1
        2    2
        Name: c, dtype: int32
        >>> func(pl.DataFrame(data))  # doctest: +NORMALIZE_WHITESPACE
        shape: (3,)
        Series: 'c' [i32]
        [
           4
           1
           2
        ]
    """
    from narwhals import dtypes

    return _new_series_impl(
        name,
        values,
        dtype,
        native_namespace=native_namespace,
        dtypes=dtypes,  # type: ignore[arg-type]
    )


def _new_series_impl(
    name: str,
    values: Any,
    dtype: DType | type[DType] | None = None,
    *,
    native_namespace: ModuleType,
    dtypes: DTypes,
) -> Series[Any]:
    implementation = Implementation.from_native_namespace(native_namespace)

    if implementation is Implementation.POLARS:
        if dtype:
            from narwhals._polars.utils import (
                narwhals_to_native_dtype as polars_narwhals_to_native_dtype,
            )

            dtype_pl = polars_narwhals_to_native_dtype(dtype, dtypes=dtypes)
        else:
            dtype_pl = None

        native_series = native_namespace.Series(name=name, values=values, dtype=dtype_pl)
    elif implementation in {
        Implementation.PANDAS,
        Implementation.MODIN,
        Implementation.CUDF,
    }:
        if dtype:
            from narwhals._pandas_like.utils import (
                narwhals_to_native_dtype as pandas_like_narwhals_to_native_dtype,
            )

            backend_version = parse_version(native_namespace.__version__)
            dtype = pandas_like_narwhals_to_native_dtype(
                dtype, None, implementation, backend_version, dtypes
            )
        native_series = native_namespace.Series(values, name=name, dtype=dtype)

    elif implementation is Implementation.PYARROW:
        if dtype:
            from narwhals._arrow.utils import (
                narwhals_to_native_dtype as arrow_narwhals_to_native_dtype,
            )

            dtype = arrow_narwhals_to_native_dtype(dtype, dtypes=dtypes)
        native_series = native_namespace.chunked_array([values], type=dtype)

    elif implementation is Implementation.DASK:
        msg = "Dask support in Narwhals is lazy-only, so `new_series` is " "not supported"
        raise NotImplementedError(msg)
    else:  # pragma: no cover
        try:
            # implementation is UNKNOWN, Narwhals extension using this feature should
            # implement `from_dict` function in the top-level namespace.
            native_series = native_namespace.new_series(name, values, dtype)
        except AttributeError as e:
            msg = "Unknown namespace is expected to implement `Series` constructor."
            raise AttributeError(msg) from e
    return from_native(native_series, series_only=True).alias(name)


def from_dict(
    data: dict[str, Any],
    schema: dict[str, DType] | Schema | None = None,
    *,
    native_namespace: ModuleType | None = None,
) -> DataFrame[Any]:
    """Instantiate DataFrame from dictionary.

    Indexes (if present, for pandas-like backends) are aligned following
    the [left-hand-rule](https://narwhals-dev.github.io/narwhals/pandas_like_concepts/pandas_index/).

    Notes:
        For pandas-like dataframes, conversion to schema is applied after dataframe
        creation.

    Arguments:
        data: Dictionary to create DataFrame from.
        schema: The DataFrame schema as Schema or dict of {name: type}.
        native_namespace: The native library to use for DataFrame creation. Only
            necessary if inputs are not Narwhals Series.

    Returns:
        A new DataFrame.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> data = {"a": [1, 2, 3], "b": [4, 5, 6]}

        Let's create a new dataframe of the same class as the dataframe we started with, from a dict of new data:

        >>> @nw.narwhalify
        ... def func(df):
        ...     new_data = {"c": [5, 2], "d": [1, 4]}
        ...     native_namespace = nw.get_native_namespace(df)
        ...     return nw.from_dict(new_data, native_namespace=native_namespace)

        Let's see what happens when passing pandas, Polars or PyArrow input:

        >>> func(pd.DataFrame(data))
           c  d
        0  5  1
        1  2  4
        >>> func(pl.DataFrame(data))
        shape: (2, 2)
        ┌─────┬─────┐
        │ c   ┆ d   │
        │ --- ┆ --- │
        │ i64 ┆ i64 │
        ╞═════╪═════╡
        │ 5   ┆ 1   │
        │ 2   ┆ 4   │
        └─────┴─────┘
        >>> func(pa.table(data))
        pyarrow.Table
        c: int64
        d: int64
        ----
        c: [[5,2]]
        d: [[1,4]]
    """
    from narwhals import dtypes

    return _from_dict_impl(
        data,
        schema,
        native_namespace=native_namespace,
        dtypes=dtypes,  # type: ignore[arg-type]
    )


def _from_dict_impl(
    data: dict[str, Any],
    schema: dict[str, DType] | Schema | None = None,
    *,
    native_namespace: ModuleType | None = None,
    dtypes: DTypes,
) -> DataFrame[Any]:
    from narwhals.series import Series
    from narwhals.translate import to_native

    if not data:
        msg = "from_dict cannot be called with empty dictionary"
        raise ValueError(msg)
    if native_namespace is None:
        for val in data.values():
            if isinstance(val, Series):
                native_namespace = val.__native_namespace__()
                break
        else:
            msg = "Calling `from_dict` without `native_namespace` is only supported if all input values are already Narwhals Series"
            raise TypeError(msg)
        data = {key: to_native(value, pass_through=True) for key, value in data.items()}
    implementation = Implementation.from_native_namespace(native_namespace)

    if implementation is Implementation.POLARS:
        if schema:
            from narwhals._polars.utils import (
                narwhals_to_native_dtype as polars_narwhals_to_native_dtype,
            )

            schema_pl = {
                name: polars_narwhals_to_native_dtype(dtype, dtypes=dtypes)
                for name, dtype in schema.items()
            }
        else:
            schema_pl = None

        native_frame = native_namespace.from_dict(data, schema=schema_pl)
    elif implementation in {
        Implementation.PANDAS,
        Implementation.MODIN,
        Implementation.CUDF,
    }:
        aligned_data = {}
        left_most_series = None
        for key, native_series in data.items():
            if isinstance(native_series, native_namespace.Series):
                compliant_series = from_native(
                    native_series, series_only=True
                )._compliant_series
                if left_most_series is None:
                    left_most_series = compliant_series
                    aligned_data[key] = native_series
                else:
                    aligned_data[key] = validate_column_comparand(
                        left_most_series, compliant_series
                    )[1]
            else:
                aligned_data[key] = native_series

        native_frame = native_namespace.DataFrame.from_dict(aligned_data)

        if schema:
            from narwhals._pandas_like.utils import (
                narwhals_to_native_dtype as pandas_like_narwhals_to_native_dtype,
            )

            backend_version = parse_version(native_namespace.__version__)
            schema = {
                name: pandas_like_narwhals_to_native_dtype(
                    schema[name], native_type, implementation, backend_version, dtypes
                )
                for name, native_type in native_frame.dtypes.items()
            }
            native_frame = native_frame.astype(schema)

    elif implementation is Implementation.PYARROW:
        if schema:
            from narwhals._arrow.utils import (
                narwhals_to_native_dtype as arrow_narwhals_to_native_dtype,
            )

            schema = native_namespace.schema(
                [
                    (name, arrow_narwhals_to_native_dtype(dtype, dtypes))
                    for name, dtype in schema.items()
                ]
            )
        native_frame = native_namespace.table(data, schema=schema)
    else:  # pragma: no cover
        try:
            # implementation is UNKNOWN, Narwhals extension using this feature should
            # implement `from_dict` function in the top-level namespace.
            native_frame = native_namespace.from_dict(data, schema=schema)
        except AttributeError as e:
            msg = "Unknown namespace is expected to implement `from_dict` function."
            raise AttributeError(msg) from e
    return from_native(native_frame, eager_only=True)


def from_numpy(
    data: np.ndarray,
    schema: dict[str, DType] | Schema | list[str] | None = None,
    *,
    native_namespace: ModuleType,
) -> DataFrame[Any]:
    """Construct a DataFrame from a NumPy ndarray.

    Notes:
        Only row orientation is currently supported.

        For pandas-like dataframes, conversion to schema is applied after dataframe
        creation.

    Arguments:
        data: Two-dimensional data represented as a NumPy ndarray.
        schema: The DataFrame schema as Schema, dict of {name: type}, or a list of str.
        native_namespace: The native library to use for DataFrame creation.

    Returns:
        A new DataFrame.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> import numpy as np
        >>> from narwhals.typing import IntoFrameT
        >>> data = {"a": [1, 2], "b": [3, 4]}

        Let's create a new dataframe of the same class as the dataframe we started with, from a NumPy ndarray of new data:

        >>> def agnostic_from_numpy(df_native: IntoFrameT) -> IntoFrameT:
        ...     new_data = np.array([[5, 2, 1], [1, 4, 3]])
        ...     df = nw.from_native(df_native)
        ...     native_namespace = nw.get_native_namespace(df)
        ...     return nw.from_numpy(new_data, native_namespace=native_namespace).to_native()

        Let's see what happens when passing pandas, Polars or PyArrow input:

        >>> agnostic_from_numpy(pd.DataFrame(data))
           column_0  column_1  column_2
        0         5         2         1
        1         1         4         3
        >>> agnostic_from_numpy(pl.DataFrame(data))
        shape: (2, 3)
        ┌──────────┬──────────┬──────────┐
        │ column_0 ┆ column_1 ┆ column_2 │
        │ ---      ┆ ---      ┆ ---      │
        │ i64      ┆ i64      ┆ i64      │
        ╞══════════╪══════════╪══════════╡
        │ 5        ┆ 2        ┆ 1        │
        │ 1        ┆ 4        ┆ 3        │
        └──────────┴──────────┴──────────┘
        >>> agnostic_from_numpy(pa.table(data))
        pyarrow.Table
        column_0: int64
        column_1: int64
        column_2: int64
        ----
        column_0: [[5,1]]
        column_1: [[2,4]]
        column_2: [[1,3]]

        Let's specify the column names:

        >>> def agnostic_from_numpy(df_native: IntoFrameT) -> IntoFrameT:
        ...     new_data = np.array([[5, 2, 1], [1, 4, 3]])
        ...     schema = ["c", "d", "e"]
        ...     df = nw.from_native(df_native)
        ...     native_namespace = nw.get_native_namespace(df)
        ...     return nw.from_numpy(
        ...         new_data, native_namespace=native_namespace, schema=schema
        ...     ).to_native()

        Let's see the modified outputs:

        >>> agnostic_from_numpy(pd.DataFrame(data))
           c  d  e
        0  5  2  1
        1  1  4  3
        >>> agnostic_from_numpy(pl.DataFrame(data))
        shape: (2, 3)
        ┌─────┬─────┬─────┐
        │ c   ┆ d   ┆ e   │
        │ --- ┆ --- ┆ --- │
        │ i64 ┆ i64 ┆ i64 │
        ╞═════╪═════╪═════╡
        │ 5   ┆ 2   ┆ 1   │
        │ 1   ┆ 4   ┆ 3   │
        └─────┴─────┴─────┘
        >>> agnostic_from_numpy(pa.table(data))
        pyarrow.Table
        c: int64
        d: int64
        e: int64
        ----
        c: [[5,1]]
        d: [[2,4]]
        e: [[1,3]]

        Let's modify the function so that it specifies the schema:

        >>> def agnostic_from_numpy(df_native: IntoFrameT) -> IntoFrameT:
        ...     new_data = np.array([[5, 2, 1], [1, 4, 3]])
        ...     schema = {"c": nw.Int16(), "d": nw.Float32(), "e": nw.Int8()}
        ...     df = nw.from_native(df_native)
        ...     native_namespace = nw.get_native_namespace(df)
        ...     return nw.from_numpy(
        ...         new_data, native_namespace=native_namespace, schema=schema
        ...     ).to_native()

        Let's see the outputs:

        >>> agnostic_from_numpy(pd.DataFrame(data))
           c    d  e
        0  5  2.0  1
        1  1  4.0  3
        >>> agnostic_from_numpy(pl.DataFrame(data))
        shape: (2, 3)
        ┌─────┬─────┬─────┐
        │ c   ┆ d   ┆ e   │
        │ --- ┆ --- ┆ --- │
        │ i16 ┆ f32 ┆ i8  │
        ╞═════╪═════╪═════╡
        │ 5   ┆ 2.0 ┆ 1   │
        │ 1   ┆ 4.0 ┆ 3   │
        └─────┴─────┴─────┘
        >>> agnostic_from_numpy(pa.table(data))
        pyarrow.Table
        c: int16
        d: float
        e: int8
        ----
        c: [[5,1]]
        d: [[2,4]]
        e: [[1,3]]
    """
    from narwhals import dtypes

    return _from_numpy_impl(
        data,
        schema,
        native_namespace=native_namespace,
        dtypes=dtypes,  # type: ignore[arg-type]
    )


def _from_numpy_impl(
    data: np.ndarray,
    schema: dict[str, DType] | Schema | list[str] | None = None,
    *,
    native_namespace: ModuleType,
    dtypes: DTypes,
) -> DataFrame[Any]:
    from narwhals.schema import Schema

    if data.ndim != 2:
        msg = "`from_numpy` only accepts 2D numpy arrays"
        raise ValueError(msg)
    implementation = Implementation.from_native_namespace(native_namespace)

    if implementation is Implementation.POLARS:
        if isinstance(schema, (dict, Schema)):
            from narwhals._polars.utils import (
                narwhals_to_native_dtype as polars_narwhals_to_native_dtype,
            )

            schema = {
                name: polars_narwhals_to_native_dtype(dtype, dtypes=dtypes)  # type: ignore[misc]
                for name, dtype in schema.items()
            }
        elif schema is None:
            native_frame = native_namespace.from_numpy(data)
        elif not isinstance(schema, list):
            msg = (
                "`schema` is expected to be one of the following types: "
                "dict[str, DType] | Schema | list[str]. "
                f"Got {type(schema)}."
            )
            raise TypeError(msg)
        native_frame = native_namespace.from_numpy(data, schema=schema)

    elif implementation in {
        Implementation.PANDAS,
        Implementation.MODIN,
        Implementation.CUDF,
    }:
        if isinstance(schema, (dict, Schema)):
            from narwhals._pandas_like.utils import (
                narwhals_to_native_dtype as pandas_like_narwhals_to_native_dtype,
            )

            backend_version = parse_version(native_namespace.__version__)
            schema = {
                name: pandas_like_narwhals_to_native_dtype(
                    schema[name], native_type, implementation, backend_version, dtypes
                )
                for name, native_type in schema.items()
            }
            native_frame = native_namespace.DataFrame(data, columns=schema.keys()).astype(
                schema
            )
        elif isinstance(schema, list):
            native_frame = native_namespace.DataFrame(data, columns=schema)
        elif schema is None:
            native_frame = native_namespace.DataFrame(
                data, columns=["column_" + str(x) for x in range(data.shape[1])]
            )
        else:
            msg = (
                "`schema` is expected to be one of the following types: "
                "dict[str, DType] | Schema | list[str]. "
                f"Got {type(schema)}."
            )
            raise TypeError(msg)

    elif implementation is Implementation.PYARROW:
        pa_arrays = [native_namespace.array(val) for val in data.T]
        if isinstance(schema, (dict, Schema)):
            from narwhals._arrow.utils import (
                narwhals_to_native_dtype as arrow_narwhals_to_native_dtype,
            )

            schema = native_namespace.schema(
                [
                    (name, arrow_narwhals_to_native_dtype(dtype, dtypes))
                    for name, dtype in schema.items()
                ]
            )
            native_frame = native_namespace.Table.from_arrays(pa_arrays, schema=schema)
        elif isinstance(schema, list):
            native_frame = native_namespace.Table.from_arrays(pa_arrays, names=schema)
        elif schema is None:
            native_frame = native_namespace.Table.from_arrays(
                pa_arrays, names=["column_" + str(x) for x in range(data.shape[1])]
            )
        else:
            msg = (
                "`schema` is expected to be one of the following types: "
                "dict[str, DType] | Schema | list[str]. "
                f"Got {type(schema)}."
            )
            raise TypeError(msg)
    else:  # pragma: no cover
        try:
            # implementation is UNKNOWN, Narwhals extension using this feature should
            # implement `from_numpy` function in the top-level namespace.
            native_frame = native_namespace.from_numpy(data, schema=schema)
        except AttributeError as e:
            msg = "Unknown namespace is expected to implement `from_numpy` function."
            raise AttributeError(msg) from e
    return from_native(native_frame, eager_only=True)


def from_arrow(
    native_frame: ArrowStreamExportable, *, native_namespace: ModuleType
) -> DataFrame[Any]:
    """Construct a DataFrame from an object which supports the PyCapsule Interface.

    Arguments:
        native_frame: Object which implements `__arrow_c_stream__`.
        native_namespace: The native library to use for DataFrame creation.

    Returns:
        A new DataFrame.

    Examples:
        >>> import pandas as pd
        >>> import polars as pl
        >>> import pyarrow as pa
        >>> import narwhals as nw
        >>> data = {"a": [1, 2, 3], "b": [4, 5, 6]}

        Let's define a dataframe-agnostic function which creates a PyArrow
        Table.

        >>> @nw.narwhalify
        ... def func(df):
        ...     return nw.from_arrow(df, native_namespace=pa)

        Let's see what happens when passing pandas / Polars input:

        >>> func(pd.DataFrame(data))  # doctest: +SKIP
        pyarrow.Table
        a: int64
        b: int64
        ----
        a: [[1,2,3]]
        b: [[4,5,6]]
        >>> func(pl.DataFrame(data))  # doctest: +SKIP
        pyarrow.Table
        a: int64
        b: int64
        ----
        a: [[1,2,3]]
        b: [[4,5,6]]
    """
    if not hasattr(native_frame, "__arrow_c_stream__"):
        msg = f"Given object of type {type(native_frame)} does not support PyCapsule interface"
        raise TypeError(msg)
    implementation = Implementation.from_native_namespace(native_namespace)

    if implementation is Implementation.POLARS and parse_version(
        native_namespace.__version__
    ) >= (1, 3):
        native_frame = native_namespace.DataFrame(native_frame)
    elif implementation in {
        Implementation.PANDAS,
        Implementation.MODIN,
        Implementation.CUDF,
        Implementation.POLARS,
    }:
        # These don't (yet?) support the PyCapsule Interface for import
        # so we go via PyArrow
        try:
            import pyarrow as pa  # ignore-banned-import
        except ModuleNotFoundError as exc:  # pragma: no cover
            msg = f"PyArrow>=14.0.0 is required for `from_arrow` for object of type {native_namespace}"
            raise ModuleNotFoundError(msg) from exc
        if parse_version(pa.__version__) < (14, 0):  # pragma: no cover
            msg = f"PyArrow>=14.0.0 is required for `from_arrow` for object of type {native_namespace}"
            raise ModuleNotFoundError(msg) from None

        tbl = pa.table(native_frame)
        if implementation is Implementation.PANDAS:
            native_frame = tbl.to_pandas()
        elif implementation is Implementation.MODIN:  # pragma: no cover
            from modin.pandas.utils import from_arrow

            native_frame = from_arrow(tbl)
        elif implementation is Implementation.CUDF:  # pragma: no cover
            native_frame = native_namespace.DataFrame.from_arrow(tbl)
        elif implementation is Implementation.POLARS:  # pragma: no cover
            native_frame = native_namespace.from_arrow(tbl)
        else:  # pragma: no cover
            msg = "congratulations, you entered unrecheable code - please report a bug"
            raise AssertionError(msg)
    elif implementation is Implementation.PYARROW:
        native_frame = native_namespace.table(native_frame)
    else:  # pragma: no cover
        try:
            # implementation is UNKNOWN, Narwhals extension using this feature should
            # implement PyCapsule support
            native_frame = native_namespace.DataFrame(native_frame)
        except AttributeError as e:
            msg = "Unknown namespace is expected to implement `DataFrame` class which accepts object which supports PyCapsule Interface."
            raise AttributeError(msg) from e
    return from_native(native_frame, eager_only=True)


def _get_sys_info() -> dict[str, str]:
    """System information.

    Returns system and Python version information

    Copied from sklearn

    Returns:
        Dictionary with system info.
    """
    python = sys.version.replace("\n", " ")

    blob = (
        ("python", python),
        ("executable", sys.executable),
        ("machine", platform.platform()),
    )

    return dict(blob)


def _get_deps_info() -> dict[str, str]:
    """Overview of the installed version of main dependencies.

    This function does not import the modules to collect the version numbers
    but instead relies on standard Python package metadata.

    Returns version information on relevant Python libraries

    This function and show_versions were copied from sklearn and adapted

    Returns:
        Mapping from dependency to version.
    """
    deps = (
        "pandas",
        "polars",
        "cudf",
        "modin",
        "pyarrow",
        "numpy",
    )

    from . import __version__

    deps_info = {
        "narwhals": __version__,
    }

    from importlib.metadata import PackageNotFoundError
    from importlib.metadata import version

    for modname in deps:
        try:
            deps_info[modname] = version(modname)
        except PackageNotFoundError:  # noqa: PERF203
            deps_info[modname] = ""
    return deps_info


def show_versions() -> None:
    """Print useful debugging information.

    Examples:
        >>> from narwhals import show_versions
        >>> show_versions()  # doctest: +SKIP
    """
    sys_info = _get_sys_info()
    deps_info = _get_deps_info()

    print("\nSystem:")  # noqa: T201
    for k, stat in sys_info.items():
        print(f"{k:>10}: {stat}")  # noqa: T201

    print("\nPython dependencies:")  # noqa: T201
    for k, stat in deps_info.items():
        print(f"{k:>13}: {stat}")  # noqa: T201


def get_level(
    obj: DataFrame[Any] | LazyFrame[Any] | Series[IntoSeriesT],
) -> Literal["full", "interchange"]:
    """Level of support Narwhals has for current object.

    Arguments:
        obj: Dataframe or Series.

    Returns:
        This can be one of:

            - 'full': full Narwhals API support
            - 'metadata': only metadata operations are supported (`df.schema`)
    """
    return obj._level