arrange.dtplyr_step Arrange rows by column values collect.dtplyr_step Force computation of a lazy data.table complete.dtplyr_step Complete a data frame with missing combinations of data count.dtplyr_step Count observations by group distinct.dtplyr_step Subset distinct/unique rows drop_na.dtplyr_step Drop rows containing missing values expand.dtplyr_step Expand data frame to include all possible combinations of values. fill.dtplyr_step Fill in missing values with previous or next value filter.dtplyr_step Subset rows using column values group_by.dtplyr_step Group and ungroup group_modify.dtplyr_step Apply a function to each group head.dtplyr_step Subset first or last rows intersect.dtplyr_step Set operations lazy_dt Create a "lazy" data.table for use with dplyr verbs left_join.dtplyr_step Join data tables mutate.dtplyr_step Create and modify columns nest.dtplyr_step Nest pivot_longer.dtplyr_step Pivot data from wide to long pivot_wider.dtplyr_step Pivot data from long to wide relocate.dtplyr_step Relocate variables using their names rename.dtplyr_step Rename columns using their names replace_na.dtplyr_step Replace NAs with specified values select.dtplyr_step Subset columns using their names separate.dtplyr_step Separate a character column into multiple columns with a regular expression or numeric locations slice.dtplyr_step Subset rows using their positions summarise.dtplyr_step Summarise each group to one row transmute.dtplyr_step Create new columns, dropping old unite.dtplyr_step Unite multiple columns into one by pasting strings together.