.stash_last_result Save most recent results to search path .use_case_weights_with_yardstick Determine if case weights should be passed on to yardstick augment.tune_results Augment data with holdout predictions autoplot.tune_results Plot tuning search results collect_predictions Obtain and format results produced by tuning functions compute_metrics Calculate and format metrics from tuning functions conf_mat_resampled Compute average confusion matrix across resamples control_bayes Control aspects of the Bayesian search process control_last_fit Control aspects of the last fit process coord_obs_pred Use same scale for plots of observed vs predicted values example_ames_knn Example Analysis of Ames Housing Data expo_decay Exponential decay function extract-tune Extract elements of 'tune' objects extract_model Convenience functions to extract model filter_parameters Remove some tuning parameter results finalize_model Splice final parameters into objects fit_best Fit a model to the numerically optimal configuration fit_resamples Fit multiple models via resampling int_pctl.tune_results Bootstrap confidence intervals for performance metrics last_fit Fit the final best model to the training set and evaluate the test set message_wrap Write a message that respects the line width prob_improve Acquisition function for scoring parameter combinations show_best Investigate best tuning parameters show_notes Display distinct errors from tune objects tune_bayes Bayesian optimization of model parameters. tune_grid Model tuning via grid search