ELF>@$@8 @<<@@@@@@(((p,-88800$$Std00Ptd  QtdRtd((( GNU GNUM+nxF>si@G~    >   A   -{q +T     ] lO  C"  K*  W- ` e8 b m)[ < -k ]   2   .BA   " F Nj R P )   4 " @Wt o 'M9Jd    a4}   T u  :  H  do N   8" l u G V< + C    R     }o[   V a y]=4j H!;p @ 3 _init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize__deregister_frame_info__register_frame_infoPyInit__decimalmpd_traphandlerPyMem_Mallocmpd_mallocfuncmpd_reallocfuncPyMem_Reallocmpd_callocfuncmpd_callocfunc_emmpd_freePyMem_Freempd_setminallocPyLong_TypePyFloat_TypePyBaseObject_TypePyType_ReadyPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectRefPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyModule_AddObjectmpd_round_stringPyUnicode_InternFromStringPyModule_AddStringConstantmpd_versionPyModule_AddIntConstantstrcmpPyExc_RuntimeErrorPyErr_Format_Py_Dealloc_PyObject_New_Py_NoneStructPyArg_ParseTupleAndKeywords__stack_chk_failPyLong_AsSsize_tmpd_qsetprecPyUnicode_ComparePyErr_SetStringmpd_qsetroundmpd_qseteminmpd_qsetemaxmpd_qsetclampPyList_SizePyList_GetItemmpd_qsettrapsmpd_qsetstatusPyErr_OccurredPyExc_ValueErrorPyContextVar_GetPyType_IsSubtypempd_maxcontextmpd_qset_ssizempd_qcopyPyContextVar_Set_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPyErr_NoMemorympd_qset_stringmpd_seterrorPyList_NewPyList_AppendPyErr_SetObjectPyFloat_AsDoublePyComplex_FromDoublesmpd_isnanPyFloat_FromStringmpd_issnanmpd_isnegativempd_to_sci_sizePyUnicode_Newmpd_delmpd_set_flagsmpd_setdigitsmpd_qfinalizempd_qimport_u32PyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_TypePyDict_SizePyExc_KeyErrorPyDict_GetItemWithErrorPyObject_IsTruempd_qadd_Py_NotImplementedStructmpd_qcmpPyBool_FromLong_Py_FalseStructPyComplex_TypePyObject_IsInstancempd_isspecialmpd_qncopympd_qmulPyComplex_AsCComplexPyFloat_FromDoublempd_qcopy_signmpd_qdivmpd_qdivmodPy_BuildValuempd_qdivintmpd_qremmpd_to_sciPyUnicode_FromFormatPyObject_Freempd_qpowmpd_qpowmodmpd_qsubmpd_qplusmpd_qminusmpd_qabsPyArg_ParseTuplempd_qcomparempd_qcompare_signalmpd_compare_totalmpd_compare_total_magPyErr_Clearmpd_qcopy_absmpd_qcopy_negatempd_qnewmpd_qset_uintmpd_set_signmpd_setspecialmpd_qexpmpd_qfmaPyObject_GenericSetAttrPyExc_AttributeErrormpd_getroundmpd_isfinitempd_isinfinitempd_isnormalmpd_isqnanmpd_issignedmpd_issubnormalmpd_iszerompd_qlnmpd_qlog10mpd_qlogbmpd_qandmpd_qinvertmpd_qormpd_qxormpd_qmaxmpd_qmax_magmpd_qminmpd_qmin_magmpd_qnext_minusmpd_qnext_plusmpd_qnext_towardmpd_getprecmpd_getemaxmpd_geteminPyLong_FromLongmpd_getclampmpd_qreducempd_classmpd_qquantizempd_qrem_nearmpd_qrotatempd_same_quantummpd_qscalebmpd_qshiftmpd_qsqrtmpd_to_eng_sizempd_qround_to_intxmpd_qround_to_intmpd_qsset_ssizempd_set_positivempd_qget_ssizempd_ispositive_Py_HashPointermpd_arith_signPyObject_CallFunctionObjArgsmpd_adjexpmpd_lsnprint_signalsPyList_AsTuplePyTuple_SizePyLong_AsLongsnprintfstrlenstrcatmpd_iscanonicalmpd_qexport_u32_PyLong_NewPyExc_OverflowErrorPyUnicode_AsUTF8AndSizestrchrmpd_parse_fmt_strmpd_qformat_specPyUnicode_DecodeUTF8memmovempd_qrescalempd_validate_lconvmpd_qrescale_fmtPyUnicode_AsUTF8Stringmpd_signPyLong_FromUnsignedLongmpd_clear_flags_PyLong_GCDPyDict_NewPyDict_SetItemmpd_etinympd_etopmpd_isdynamic_datambstowcsPyUnicode_FromWideCharPyObject_HashNotImplementedPyType_GenericNewlibmpdec.so.3libc.musl-x86_64.so.1 (08@ H P X ` hp!@#x !"#$ %(&0'8(@)H*P+X-`.h/p0x123456789:;<=>?@ABCDE F(G0H8I@JHKPLXM`NhOpPxQRSTUVWXYZ[\]^_`abcde f(g0h8i@jHkPlXm`nhoppxqrstuvwxyz{|}~ (08@HPX`hpx (08@HPX`hpxP  (08@HPX`hpx,X(1ps0 `wݻwwffffvݻ;wwwwwwwwB f33s33333*ff P$!)$ @APXE1E111H=HtE1L5HtHMtLMtLH=HtE1LH=HtE1LH=HtE1L sH=HtE1LXH=Ht1H5>H=wHt1H i$HtH1騄HcUHKx#H1I1LE1E11E1E111E11HE1E111MLHӷHH5H811Z1HHSHa1HRHHH5H8EHmH5H8})HQH5H8aBH1} H1#H1A<$uC~w*A$IHL9tjA_tûE1$vQL$H$&H$L$u@L$H$Q?&0L$H$IAD$#Hζ8tA$ InA#A?$vjL$H$H$L$uYL$H$е%0H$L$IAD$$A<%A<$C<$H48tA$ I#1'HH5H8öZ)O)LCB)D$¶D$HH1[M1++IPHH9),+HHH, IPHHH5H851*-HPH[]A\A]A^HxLt$ Ht$ ',H~1-Hs/HH{rF/=/HH5/H80HjH5H8zvłH|$H|$,3H|$H|$14H|$H˹HBH5H8LL$D$D$L$Hu&8H1H5rH8HDH7L/̓L"H:L LHLL؄H1ƅLLLL1魆HLH1f;H1HHSrJ1>LXLPML?錊L2L*1U?HH1H1yH1?H1 LHLALL,BLLHHLwBHjLbCH.HI1L:H01L!LLHLLoDLLzEHmELLLLHِHvFL}GHL~H^GHhHHzGH5GH(1LHILL L IH L L 颒H 镒[]A\%HگHH釓HǯHHHHHHx 1Li H_ 1釘LP HF 1.L7 L- L% GH :H 1ӚL L L H ߛL L H ݜL L H ۝L L Hw ٞLj Lb HU ןLH L@ H3 ՠH& 1nL L L IH 1L H 1駢L L L H 鳣H 1LL HD$dH+%(u H1[]Ll 1LL] LU Ht$خHt$HeM3MHMuMHt$Ht$HMMH 1L L L Hl$NL L M)OL OL L (PL L 7QHx *QLk Lc 酥HV xLI LA 郦H4 vL' L qH dL L oH bH 1;QL L L TRH GR1鲩H 1SL H 1Ls 1RHH5nH811錫H6 13H' tRIL%THIH5jIH8UTMULTH1HVHH5FH8 1G &Hu鈱HP4HfIHH5+H8HH5H8HjH5H8zHޭH;H'1=H1HD$dH+%(uH 1[ū H H|$HYɮHYHIHLHH5H8 hHLSHFHGH5H8ϦHZLRHEL=HH5BH8HH5&H8mHHL31`1YE1E111J1101)Z1[]LIE1eL1IE1HfHyfLIH+u HE1eE1HH5VH81H&LHHۧH5H8c1HLHHH5H8)1HHHHZ1[]Z1[]HH}HIH-1HH=NH5BH8t#HHHLP #HHHDH H HPH=1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$@HpHUHSHdH%(HD$1HH1HtHH5H8ţH߾EHHu1HHH-HD$dH+%(t'HH[]f.H/t f%"f.HSH9HHH=V1>HC@H2H=:1"HCHH+HHt\oBHK(CoJ K oR0HS@S0HJHS,HPCPHCXH[10HHeHS@H{ H5SHK(HJHS,HP1CPHCXHG1DSH HHHHHPdH%(HD$HH7HD$@HD$8HD$0HD$(HD$ HD$HD$HD$HD$PHD$PHD$(PHD$8PHD$HPHD$XP1LL$hLD$pyH0HHt$t$ t$0LL$@LD$HHL$PHT$XHt$`$H HT$HdH+%(uHP[@AWIAVMAUATIUSHHH-WL $Ll$`H9t(HPHHH{I9dID$H5I9.L;%L;%L;%L;%L;%L;%L;%LH5SLʞZH5CLtH53LpH5#LLVI4HL$L\HL$L:HHuHH5H8Sf.1H{I9t(LHHH{I9t(LHHH{H<$H9IWH;H@CPH9l$Pt1H;ӿH=ͿH;ؿH=ҿH;ݿH=׿H;H=ܿH;H=H9H=H5ٿH H>qH;Fu@FCA IL9$$A%H{DTH9l$X\HD$XH@H|$XKHHE1E1L5rH|$XLI>sH9kH=eXH;pH=j=H;uH=o"H;z4H=tH9)H=yH9>H=~HqH H:H;Bu@BIA L9AH{D01H[]A\A]A^A_H1H5!$@H1|@H5!@H1\@H5!@H51@H!,@H1@H5!@H51@H!1H{p[1H{,wH>H9l$P@  Hu-HH{HH5H8OQnH$[H4$HuVHNH5GH8.HuHH{HH5H8ԙHtHH5H8XLHdf5RnU+HHH{%+H~H5'H8>mHt$XH_1҅OVfAUH ATUHHHSHHhHdH%(HD$X1LL$LD$HD$H\$rOLl$I91H=SHT$ %H|$ HH|$H/ H\$Ll$HH{L% L9u(D$ L9H9kHBLuH{HuA&HLH8HHD$XdH+%(?HhH[]A\A]HIH?HLLLHHcHD$HH H(fDH\$Ll$H1HD$ HHHl$ H?1H{HL$ Ht$ LfI}H5EH9uXH\$Hz뉩H5H9LuAHLH)HfDHØH5H8K1wHHHHsHT$ HHxt$ L69fMHCH51HPH:H81ߘH#HHH0HHRH=HI"M1Ll$fH1H=+dH%(HD$1HH$HtHT$dH+%(uH`H9uPZ@AWAVAUATUSHG AAA @LoL0I}-IH *AMIU6C|/H<8ZA?;H{<8uj1҃IML f.LD#DA_u>AT$~HELeL9uA$HL[]A\A]A^A_It]A6H8tOIt0A<H8tHL9uѐA1L9}A܉M6AWf_uus~A$IHL9u%Qo1HtICH{HLH}HAD$CHBf..zff.zcuaIHWAN,LLHLHH(H}H\$H9x|H|HGIH H\$LEff.fAUATIUH1SH(H=dH%(HD$1HT$D$ Ll$MImI|$HgH9H}I$H9HEH{HHf@0H@HIM@HUIt$fo,H@H{LD$ @HC@}I,$Hmt$ L$HD$dH+%(H(H[]A\A]fHg~1ID$LLHIHH}H9 fDH~HEtfHLHHHVfDL|Hm$@H|f.L|_zH-zHELHuHzHHX1LEIH1fAUATIUH1SH(H=OdH%(HD$1HT$D$ }[Ll$MImcI|$HH9H}I$H9HEH^yHHf@0H@HIM@HUIt$foM*H@H{LD$ @HC@&yI,$Hmt$ LHD$dH+%(H(H[]A\A]fH|1ID$LLHIHH}H9 fDH{HEtfHLHTHHVfDLzfHzfLzLxHUxHH-ExHELH CIH!idDUSHHHHHH=H95 H=H;5H=hH;5H=MH;5H=2H;5H=H;5H=HH H8H;pu@h;xHsы! E1H[]@HїHaHqHHt@HdHwH5H8uzHwH5߼H8uH|$JJH|$fDUSHQHHHH{uPtzHH[HH=1FtHHH tHZ[]AUATIUHSH(dH%(HD$11D$uHBHHaHHt$H1Hl$txHt$HL1Ll$t{H=dOLd$HHIuHxHKIT$LD$wLLt$HfHD$dH+%(uH(H[]A\A]LHl$tff.ATI1USHdH%(HD$1|$jHnHHVH=zHHKIt$HxHL$HSfvt$HHD$dH+%(u HH[]A\tAUATUHHH5SH8dH%(HD$(1HL$HT$ D$ 1xH\$ L%ݘH{L9HHT$Ht$HLLl$IHHsHxHMIULD$ wH1L)t$ HuzHD$(dH+%(u~H8L[]A\A]LvZHCtHHLHH7HPHtH5H81$uE1LHrDAU1ATUSHHH5H8dH%(HD$(1HL$T$HT$ vHT$ Ht$HٿtHT$Ht$HٿULd$twH=5 Ll$HH!It$HKIULD$HxrLLt$H7u*HD$(dH+%(u&H8H[]A\A]L}1H1owqATUSHHH5H0dH%(HD$(1HL$HT$ uHT$ Ht$Hٿ\HT$Ht$Hٿ=Hl$t\H=Ld$HH@IT$HuHxtHLHD$(dH+%(uH0H[]A\H1pfDATUSHHH5 H0dH%(HD$(1HL$HT$ tHT$ Ht$HٿlHT$Ht$HٿMHl$t\H=-Ld$HHeIT$HuHxnHLHD$(dH+%(uH0H[]A\H1ofDAU1ATUSHHH5H8dH%(HD$(1HL$T$HT$ sHT$ Ht$HٿtHT$Ht$HٿULd$H=1Ll$HH޻It$HxHKIULD$pLLt$H3uHD$(dH+%(u&H8H[]A\A]Hy1L1ksnAU1ATUSHHH5H8dH%(HD$(1HL$T$HT$ rHT$ Ht$HٿTHT$Ht$Hٿ5Ld$t{H=Ll$HH׺It$HxHKIULD$slLLt$HHD$(dH+%(uH8H[]A\A]LY1_mff.@AWAVAUATUHSHHxH~HT$dH%(HD$h1D$,1H5kH9.Hnf.Mz~ fTfV f. DHD$fH~H?H9H9,HHH1HtHmIMIl$I|$ 1CIHHoI.IHRHT$IEHHHD$I,$HXHDoHH}oIHbLt$0L|$,LHmLLHoHt$LLLnHHMLLnt$,H|$ݸLMMLHLLLL$kHFoL=ot$,H|$ҸLL$t$LH5H8?E191HHHC HHLhL+ME1H@H5H8>S?> HH%钘龘fDH=gHgH9tHAHt H=agH5ZgH)HH?HHHtH?HtfD=)guGUH==Ht H=rC=gH=O?t H=@?f]ff.@H=Bt&UH5fH=HB]8+f.AWH cAVAUATUSPH@H;HHq?HHAH>HHv@HAHH<H>H@H>H5wHC`HPHfHH@(HfHfH<HP`HHR@HjfHVfH-HH5 H+fH H<L=cH=EbH>cHdHaH_>ˁL>H=^>H=N`>L-L<HHtL%yH=bHLj;lH=CdHLO;QH?H=?=HHH5.H~<IHPHH @aH1H5=HH$ٗH5H1<HdHH豗L詗H=ʀ<HHL5ҀH1LLHɀH5ǀn=HdHHlL:HHWHdHLH$:(HH=sW<IH7H5jHS;IHIH=>1H \HJH5N09HQdHHH蝖L蕖L荖H=T=HH_H_H5Hh8xLH5@HM8]HcLH28BH71H=H0>HbHHH5H7 [>HbHH-tZA=H5~b1:IMH1L+>HHwLKHHHD7PHHbH HJDIItk=t;K=@TH ZZHZ1H5eZ7:IAHpZH5IZ1:IHmYL%WHWI,$HA|$H5EY19HHr~I|$1H=ID$HT~H(IT$I4$H&62~I H9HH5`1Z9IdHS<HJ<H129Hc1L?:H`HH}H5F}H5}1H=;} 8H`H}L%5H5'}HL[5k}LH5}H@5P}1L9H^`HH2}foHH@ IH@(KH5|@H"Lb8HB0BP4|1L99H_HH|fo ^E1HH@ Lx(H5o|HH!HHB0Lb8BP_4o|L%@PI<$t5I|$9IHF|I4$HH*7|IH-^HuH{L-161L%@_Nt-L7I,HH{LH3{HH@uH{H5{H-5{G8H5{HH 5xZH[]A\A]A^A_|{@UHSQHt4HH3H{H7tH C{HCZ[]z{ff.SH=H^1AH|H1H=^C,H3HH{运H[f.S1HH=[-7Ht1HxHs P0SPPP[ff.SHFH:}HHi6HD$CD$f.z|Hf[%6ff. ff.HuPH5H5EzH8I3HZø DSHFHHH9^]t*7}H{`81k}[HFf.ATUSHG tvH1L%#T3H tUH2H5yH82[]A\HIt$F2HHt>p4}uA l$I I<$uH4H5H8J2j2H|uff.ATH 7PUSHHH1H0H-71dH%(HD$(1LL$T$LD$ Hl$Hpy2 HD$H9THD$HH>HL$Ht$HڿwHL$HT$ Ht$VHl$H=2WLd$HH|HuHL$IT$Hx2H輍L贍t$H|$6R|HD$(dH+%(u5H0H[]A\HxH5WXқ,{H]1c1AVAUATIUHSH dH%(HD$11D$#HHH1Ht$HHMHt$HL13Ll$L%VLLt$HH{LޠIH{HpINIULL$LCH}2L{Lst$HuHLHH=v1~/LHCH;HD$dH+%(u:H H[]A\A]A^LH 1H\$LH\$/ff.AUATIUHSH(dH%(HD$11D$赙HzHH衋HHt$H1߬Hl$txHt$HL1ĬLl$t{H=T菟Ld$HHzzIuHxHKIT$LD$.L*L"t$H覟+zHD$dH+%(uH(H[]A\A]LHl$.ff.AUATIUHSH(dH%(HD$11D$襘HyHH葊HHt$H1ϫHl$txHt$HL1贫Ll$t{H=SLd$HH|yIuHxHKIT$LD$.LLt$H薞SyHD$dH+%(uH(H[]A\A]L؉Hl$-ff.AUIATIUSHXHA,dH%(HD$H1H\$@H\$8H\$0H\$(H\$ H\$H\$H\$H$hH<HHTHsLLQH HHD$PHD$PHD$(PHD$8PHD$HPHD$XPHD$hP1LL$xL$8-H@HD$@H9Hl$@H=zP,HHH|$@1 HCHH,xHkHEPt$t$t$(LL$8LD$@HL$HHT$PHt$X蘊H xQHD$HdH+%(uMHXH[]A\A]HxH5'S袖YH.H5D{H8+1H1,ff.fSHwH11HtHHCH[f.PH(+H5|H8 +ZÐQHw1HtH藇H(*HZf.SHHHtnH{Ht`H[%)fDAVAUIATIUH1SH0dH%(HD$(11T$ HD$HbHH1Ht$ HLCHt$HL1)Ld$ H;-])Ll$H=OޚLt$HH=vMHKIUIt$HxLD$ .LpLht$ HHD$(dH+%(H0H[]A\A]A^1Ht$HHn\LLHl$HxINIUIt$LL$ LC,LׅZHl$ tLHl$bH讅1S)ATI1USHdH%(HD$1|$zH`uHHfH=N芙HH=uIt$HxHL$HS&*t$H躙 uHD$dH+%(u HH[]A\)ATI1USHdH%(HD$1|$ڒHtHHƄH=MHHtIt$HxHL$HSf(t$HxtHD$dH+%(u HH[]A\p(ATHHUSHH dH%(HD$1Ht$1D$ z>tH=[MFLd$HH(tIt$HxHL$ HS-*Lt$ HisHD$dH+%(u H H[]A\'ff.@AU1ATUSHHH58nH8dH%(HD$(1HL$T$HT$ +HT$ Ht$Hٿ蔤HT$Ht$HٿuLd$t{H=UL@Ll$HHVsIt$HKIULD$Hx+LۂLӂt$HW+sHD$(dH+%(uH8H[]A\A]L虂1&ff.@USQHGHt{HVHtpKw_HNH9 Ou$:98ƒ8rH`$HZ[] t%HHuHU9Āt&'H&H'H5FlH8J%1ff.ATHHUHSH dH%(HD$1Ht$1D$ IrH=J趕Ld$HH3rIt$HT$ Hxa(LYt$ HݕqHD$dH+%(u H H[]A\3%HHHdH%(HD$1HItH$HT$dH+%(u H1$fATHHUHSH dH%(HD$1Ht$1D$ bqH=I趔Ld$HHLqIt$HT$ Hx#LYt$ Hݔ qHD$dH+%(u H H[]A\3$AU1ATUSHHH5jH8dH%(HD$(1HL$T$HT$ c(HT$ Ht$HٿHT$Ht$HٿLd$twH=HLl$HH`pIt$HL$IUHx?$L_LWt$Hۓ9pHD$(dH+%(uH8H[]A\A]L1##AV1AUATUSHHH5iH0dH%(HD$(1HL$T$HT$ Q'HT$ Ht$HٿHT$Ht$HٿLl$L%GL角Lt$HHoL莒IHoHpINIULL$LCH}$L+~L#~t$H角uHLHH=h1.!LH}H}HD$(dH+%(u0H0H[]A\A]A^L}H}1L1}!DATHHUSHH dH%(HD$1Ht$1D$ 躞:oH=F膑Ld$HH$oIt$HxHL$ HS L%}t$ H詑nHD$dH+%(u H H[]A\ ff.@AUH =ATUSHHHHgHPH-PdH%(HD$@11D$ HD$Hl$P1LL$8LD$@ ZYMHD$H9hHD$HH)R|HL$Ht$ Hڿ苝HL$HT$0Ht$jHl$ =nHL$HT$(Ht$DLd$H= E Ll$HHmHxHD$HuIMIT$LL$L@mH{L{L{t$H|$ueHD$8dH+%(uaHHH[]A\A]HxH52F證H!H5OnH81H1 {L{H1 {@UHHSHdH%(HD$1H'tBH,$H}=t4HHHHzHD$dH+%(uHH[]1H^ HHUHHSHdH%(HD$1H藛tFH,$H}M!tlHHHHzHD$dH+%(uHH[]1UHHSHdH%(HD$1HtBH,$H}uu4HHHHyHD$dH+%(uHH[]1HHHwUHHSHHdH%(HD$1H脚tVH,$HsH}t0H;HHHyHD$dH+%(uHH[]HHH1UHHSHdH%(HD$1HtFH,$H}]jH^HHHwxHD$dH+%(uHH[]1cUHHSHdH%(HD$1HwtRH,$H}}t0H2HHHwHD$dH+%(uHH[]HHH1UHHSHdH%(HD$1HtFH,$H} iHNHHHgwHD$dH+%(uHH[]1SUHHSHHdH%(HD$1HdtVH,$HsH}u0HHHHvHD$dH+%(uHH[]HHH1UHHSHdH%(HD$1HחtRH,$H}u0HBHHH[vHD$dH+%(uHH[]HbHH17ATHHUSHH dH%(HD$1Ht$1D$ :jhH=?Ld$HHThIt$HxHL$ HSLut$ H)hHD$dH+%(u H H[]A\ff.@ATHHUSHH dH%(HD$1Ht$1D$ zgH=[>FLd$HHgIt$HxHL$ HS-Ltt$ HijgHD$dH+%(u H H[]A\ff.@ATHHUSHH dH%(HD$1Ht$1D$ 躕gH==膈Ld$HHgIt$HxHL$ HSL%tt$ H詈fHD$dH+%(u H H[]A\ff.@AU1ATUSHHH5x^H8dH%(HD$(1HL$T$HT$ #HT$ Ht$HٿԔHT$Ht$Hٿ赔Ld$t{H=<耇Ll$HH fIt$HxHKIULD$sLsLst$H藇eHD$(dH+%(uH8H[]A\A]Lr1ff.@ATHHUSHH dH%(HD$1Ht$1D$ ړweH=;覆Ld$HHaeIt$HxHL$ HSLErt$ HɆeHD$dH+%(u H H[]A\ff.@AU1ATUSHHH5\H8dH%(HD$(1HL$T$HT$ CHT$ Ht$HٿHT$Ht$HٿՒLd$t{H=:蠅Ll$HHedIt$HxHKIULD$L;qL3qt$H跅:dHD$(dH+%(uH8H[]A\A]Lp1ff.@AU1ATUSHHH5x[H8dH%(HD$(1HL$T$HT$ #HT$ Ht$HٿԑHT$Ht$Hٿ赑Ld$t{H=9耄Ll$HHgcIt$HxHKIULD$;LpLpt$H藄bHD$(dH+%(uH8H[]A\A]Ln1ff.@AU1ATUSHHH58YH8dH%(HD$(1HL$T$HT$ HT$ Ht$Hٿ蔏HT$Ht$HٿuLd$t{H=U7@Ll$HHkaIt$HxHKIULD$;LmLmt$HW@aHD$(dH+%(uH8H[]A\A]Lm1ff.@AU1ATUSHHH5XH8dH%(HD$(1HL$T$HT$ HT$ Ht$HٿtHT$Ht$HٿULd$t{H=56 Ll$HHm`It$HxHKIULD$LlLlt$H7B`HD$(dH+%(uH8H[]A\A]Lyl1ff.@AU1ATUSHHH5VH8dH%(HD$(1HL$T$HT$ HT$ Ht$HٿTHT$Ht$Hٿ5Ld$t{H=5Ll$HHo_It$HxHKIULD$LkLkt$HD_HD$(dH+%(uH8H[]A\A]LYk1_ff.@ATHHUSHH dH%(HD$1Ht$1D$ Z^H=;4&Ld$HH^It$HxHL$ HSLjt$ HI^HD$dH+%(u H H[]A\ff.@ATHHUSHH dH%(HD$1Ht$1D$ 蚋J^H={3f~Ld$HH4^It$HxHL$ HS Ljt$ H~]HD$dH+%(u H H[]A\ ff.@ATHHUSHH dH%(HD$1Ht$1D$ ڊ]H=2}Ld$HH]It$HxHL$ HS- LEit$ H}J]HD$dH+%(u H H[]A\ ff.@AU1ATUSHHH5SH8dH%(HD$(1HL$T$HT$ CHT$ Ht$HٿHT$Ht$HٿՉLd$t{H=1|Ll$HH\It$HxHKIULD$L;hL3ht$H|f\HD$(dH+%(uH8H[]A\A]Lg1 ff.@ATHHUSHH dH%(HD$1Ht$1D$ [H=0{Ld$HH[It$HxHL$ HS Legt$ H{[HD$dH+%(u H H[]A\? ff.@UHHSHHdH%(HD$1HDY[H,$HsH}ZHHfHD$dH+%(uHH[]%  f.ATHHUSHH dH%(HD$1Ht$1D$ 躇g[H=/zLd$HHQ[It$HxHL$ HS L%ft$ Hz[HD$dH+%(u H H[]A\ ff.@AU1ATUSHHH5xPH8dH%(HD$(1HL$T$HT$ #HT$ Ht$HٿԆHT$Ht$Hٿ赆Ld$t{H=.yLl$HHZIt$HxHKIULD$S LeLet$HyZHD$(dH+%(uH8H[]A\A]Ld1ff.@AU1ATUSHHH5XOH8dH%(HD$(1HL$T$HT$  HT$ Ht$Hٿ贅HT$Ht$Hٿ蕅Ld$t{H=u-`xLl$HHYIt$HxHKIULD$+ LcLct$HwxYHD$(dH+%(uH8H[]A\A]Lc1ff.@ATUSHHH5HH-TdH%(HD$1IH,$tlH$H9tgHxH5gat8H$H{HpTtUHHHT$dH+%(uGH[]HH5PFH81&aH$HHtSHHUH SHHH1H(H-ydH%(HD$1LD$T$ H=Hl$HD$H9ttHxH5y`H=fHHtiHD$HsH}HL$ HP<t$ H|$fu3HD$dH+%(uJH(H[]+`HD$HHtRHR1HH5E1H8Zf.UH SHHH1H(H-YdH%(HD$1LD$T$ H<Hl$HD$H9uw_HD$HHiQH=eHHtsHD$HsH}HL$ HPyt$ H|$euIHD$dH+%(uEH(H[]HxH5]_uHH5DH8J1H1Pff.UH SHHH1H(H-9dH%(HD$1LD$T$ H};Hl$HD$H9uw_^HD$HHIPH=mdHHtsHD$HsH}HL$ HPt$ H|$duIHD$dH+%(uEH(H[]HxH5=^uHH5BH8*1H1Off.UH SHHH1H(H-dH%(HD$1LD$T$ H]:Hl$HD$H9tpHxH5]tuH=iTcHHtxHD$HsH}HL$ HPt$ H|$cuNHD$dH+%(uJH(H[]\HD$HHtNHH5AH8 1H1Nff.UH HSHHH1H(H-dH%(HD$1LD$T$ H=9Hl$nHD$H9uw\HD$HH NH=B-bHHtsHD$HsH}HL$ HPt$ H|$[buIHD$dH+%(uEH(H[]HxH5[uHbH5@H81H1tM|ff.UH 8SHHH1H(H-dH%(HD$1LD$T$ H8Hl$NHD$H9uwZHD$HHLH=" aHHtsHD$HsH}HL$ HPt$ H|$;auIHD$dH+%(uEH(H[]HxH5bZuHBH5?H81H1TL\ff.UH (SHHH1H(H-dH%(HD$1LD$T$ H6Hl$.HD$H9tpHxH54ZtuH= _HHtxHD$HsH}HL$ HPt$ H|$"`uNHD$dH+%(uJH(H[]oYHD$HHt]KH$H5e>H81H16K>ff.UH 8SHHHH6HH-dH%(HD$1IH,$t~H$H9tFHxH5"YtJH$H{Hp,HHT$dH+%(u:H[]XH$HHtvJH=H5~=H81cATH USHHH1H`H-dH%(HD$X1LL$T$ LD$Hl$Hx5Hl$2HD$H9WHD$HHIHD$Ld$ LHpH|$H9u\H=]HHHsHxLHL$ t$ H|$]ulHD$XdH+%(uhH`H[]A\hƅxALuAHxH5~WMHH5 <H8g1H1HfHQ@HHZHQ-u HHZHHZHQ t HHZHEHZHQt HrHZHHZHQ]t HBHZHHZUHH=5SHdH%(HD$11D$\H?HHT$HuHxD$?HD$dH+%(u HH[]ff.UHH=SHdH%(HD$11D$[Hr?HHT$HuHxnD$C?HD$dH+%(u HH[]ff.UH=8SV![HHt1H@@Hk1HH HC01HHK (HZ[]Ðff.AU1ATIUHSHXdH%(HD$H11T$HD$nTH1HHZF1HT$LH5E1H|$HfouHD$@D$HD$8HGD$fo%HD$@D$(IHH=YIHHH?I9tLHHuI|$HD$HKHT$LD$t$HZu3HD$HdH+%(unHXL[]A\A]úHHaIL4EE1HuH=]HYIHeHH5<H8[ff.HQt HHZHHZHPZff.ATIH~UHStHH#>L9%>I9s I,H9 >HLH+H[]A\ff.AWAVMAUIATUSSHnHnH)H=HIIHY=H =MLHHLM9e=X[]A\A]A^A_DE1AUIHATIUHSAPL H=LHHHImCM=L+Hv=I$H HE1Z[]A\A]ff.HHUSWH=V AWHHt/H@@1Hk1HHHC01HHs JHZ[]HHUH SHHH1H(H-9dH%(HD$1LD$T$ H}-Hl$HD$H9uw_PHD$HHIBH= mVHHtsHD$HsH}HL$ HP!t$ H|$VuIHD$dH+%(uEH(H[]HxH5 =PuHH54H8*1H1Aff.ATH USHHH1H0H-dH%(HD$(1LL$T$LD$ Hl$HP,HD$H94OHD$HHAHL$Ht$HڿWbHL$HT$ Ht$6bHl$H= TLd$HH;HD$HuIT$LD$H{HH[H@L@t$H|$ Uu9HD$(dH+%(uAH0H[]A\HxH52 N'|:H8@1H1*@2fATH WUSHHH1H0H-dH%(HD$(1LL$T$LD$ Hl$H*HD$H9MHD$HH?HL$Ht$Hڿ`HL$HT$ Ht$`Hl$H=}SLd$HH9HD$HuIT$LD$H{HHSH?L ?t$H|$Su9HD$(dH+%(uAH0H[]A\HxH5 -M'B9H>1H1>fATH USHHH1H0H-dH%(HD$(1LL$T$LD$ Hl$HP)HD$H94LHD$HH>HL$Ht$HڿW_HL$HT$ Ht$6_Hl$H=QLd$HHZ8HD$HuIT$LD$H{HHH=L=t$H|$ Ru9HD$(dH+%(uAH0H[]A\HxH52K'7H8=1H1*=2fATH USHHH1H0H-dH%(HD$(1LL$T$LD$ Hl$H'HD$H9JHD$HH',H801>ff.ATH 7USHHH1H0H-dH%(HD$(1LL$T$LD$ Hl$HHD$H9=HD$HH/HL$Ht$HڿPHL$HT$ Ht$PHl$H=}CLd$HH+HD$HuIT$LD$H{HHCH/L /t$H|$Cu9HD$(dH+%(uAH0H[]A\HxH5-='B+H.1H1.fATH USHHH1H0H-dH%(HD$(1LL$T$LD$ Hl$HPHD$H940Hc.HJDIH{ IH=IH&1H=K1E1HH\&fATH wUSHHHH H0H-dH%(HD$(1LL$ LD$Hl$ -&HD$ H96HD$ HH&(HL$ Ht$HڿIp&HL$ HT$Ht$IHl$c&H="HgH[HH56H81[ff.SHH_dH%(H$1H"HyH55H89H$dH+%(u HĠH[ff.HP5ZH%ff.HP-ZH%ff.USHHRHGHh Xt HC8HlXH[]%PXas_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version____libmpdec_version__|OOOOOOOO-nanargument must be an integerinvalid signal dictargument must be a contextnumeratordenominator(OO)|OOOOOOOOOsignal keys cannot be deletedDecimal('%s')argument must be int or floatOO|OO(nsnniiOO)argument must be a DecimalFInfsNaNexponent must be an integer%s%licannot convert NaN to integerO|OO<>=^+- format arg must be strinvalid format stringdecimal_pointthousands_sepgroupinginvalid override dictO(O)(i)TrueFalsecopyprecEmaxEminroundingcapitalsclamp__enter____exit__realimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__adddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixindecimal.ContextManagerctxotherthirdmodulodecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.Decimaldecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.Contextinternal error: could not find method %svalid range for prec is [1, MAX_PREC]valid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]internal error in context_setroundvalid range for Emin is [MIN_EMIN, 0]valid range for Emax is [0, MAX_EMAX]valid values for capitals are 0 or 1valid values for clamp are 0 or 1internal error in context_settraps_listinternal error in context_setstatus_listoptional argument must be a contextargument must be a tuple or listconversion from %s to Decimal is not supportedinternal error in flags_as_exceptioncannot convert signaling NaN to floatinternal error in context_settraps_dictargument must be a signal dictexact conversion for comparison failedvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]context attributes cannot be deletedinternal error in context_setstatus_dictCannot hash a signaling NaN valuedec_hash: internal error: please reportinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in PyDec_ToIntegralExactcannot convert Infinity to integerinternal error in PyDec_ToIntegralValueinternal error in dec_mpd_qquantizeoptional arg must be an integeroptional argument must be a dictunexpected error when roundingformat specification exceeds internal limits of _decimalcannot convert NaN to integer ratiocannot convert Infinity to integer ratio{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}invalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERIC*l*x)y*^**Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. localcontext($module, /, ctx=None, **kwargs) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module?B  ?B?d d @; ax|  8 @ P ƕP(Jdmz4(C<_~0 ^s<ƙHh(Nlo~ \ʚ\ߚT+7PTi\›,XqHŜϜH T!!!H":"S"u@###ҝH$$$8P%Z%s%H&&&ܞ' ((5 )SD)g))8*ޟ**D+7+Y(,{,,(-ؠp-- .T.$.C.Jl>?ۧ`??<@vh@@AXAAA BBB , @  l ph(8LXhXXHXx0LX @0( ( ( HHd%8 'X$'x<'T'h''D((h($)\)h)X*8*X,,8(..\//D055T667 8? ?x0 8   DxDP8\ d"""#8#$%(&x&x(p(h)) h*px+x,L-/0 0` (1 1 82 2(!H3l!3!h4!(5"5d"6"7 #8\#9#: $;d$=$(>%H?l%@&@d&A&B'hC'C)D+E`+F+G+HD,JD-J-xK-8Ll.L.L.M0HNt0XN0xN0O08O0HO1O1XP1P1HT 2xT,2TL2Ux2V2W2X2Y(3ZT3\3(]3H^3h_48`04a4a4a4(b4Xb 5b,5cp5c7c@7cT7e7e7e<8Xf8f09Xg9hg9g9g9h:hjP:k:hm:n@;hp;q;Xs0<t<u<hw=xd=hz={>h}T>~>(>H?4@ȃ@@@X0AxAAxApBB(BzRx H@BNB B(A0A8A@ 8D0A(B BBBA h~@( DADA v AAA &# H A t H,pA[`ChFpFxFFFV`LhGpDxDb`T AA x`HGBEE B(D0A8GP< 8A0A(B BBBH HWP<BIA J(K" (D ABBD <?XYD G A t   FAD 4ArLGH|BBB B(A0C8FP 8D0A(B BBBA <nIPH\$BBB B(D0D8D 8D0A(B BBBA _K| A /8$N\BA A(J0K (F ABBA 400 RAD BEPއ# _C(lAEJ0m AAA 0tBCA G0  DABH  044ADO  DAD vDA >* 8AU,TBBB A(A0D0nb 0D(A BBBA XDsBLD D(D0 (D ABBD F8M@M8A0G (A ABBJ 00, <D8ADG y GAK L AAJ LAA+H\`:_ZHAj A [)*8BBA A(D0V (A ABBA (0(DqBAA l ABA p,FA| A ,HBAA D ABA   (AAD g AAA @HAi N 88tBBD D(DP (D ABBA tP8,BEE H(A0Z (A BBBJ LSBBB B(D0D8I 8A0A(B BBBG  i0< pmBHA OP  DABA p >P8 PWBBD F(DP (D ABBC  zP@ 8eBBB D(D0DP 0D(A BBBA ( /2P8H D BBD D(DP (D ABBA  !P8 BBD D(DP (D ABBA  ΃!P8 D;BBD F(DP (D ABBC 4 !PtP \ BED A(DjMFFFFFFYZDDDbX (D ABBA  $ &Ad( |AAG0( AAE $, @`AAD WAAT  l 0 A] 8 &Ad P *Ac@ d BBE D(F0D` 0D(A BBBA  &`8 BBD D(DP (D ABBA X ځ!P0t X BFA D0  DABA  00 BFA D0  DABA  j00BFA D0  DABA H)00d BGA L@  DABA @8kBBA N(D` (D ABBA `8 BDA A(Q` (D ABBA Hf`8dh BDA A(Q` (D ABBA #"`0PBAA QP  DABA P0 BAA QP  DABA @P(\ AAA J AAA   0 BGI D@  DABA G@\ ND  A 0  BGI D@  DABA @~@8\ BDA A(Q` (D ABBA ~"`88BDA A(Q` (D ABBA ~`8 BDA A(Q` (D ABBA H<~"`@d kBDB A(A0Q` 0D(A BBBA }2`LdBBB B(A0D8GT 8D0A(B BBBK }d08BGA L@  DABA l}@@4bBDB A(A0Qp 0D(A BBBA }*pDBIA A(TxhSxAp (D ABBA 4K}*pLPBAA Q ABF X DBA A GBE AGB  }  AAB$D_(ALD0X DAA (}ALD0\ DAA 4|0(L0ALD0X DAA (xAGL0\ DAA (}ALD0\ DAA {0(4ALD0X DAA (}ALD0\ DAA @{0(XAGL0\ DAA (8ALD0X DAA 0BGA L@  DABA {@0 BGA L@  DABA 4z@0P|BGA L@  DABA z@8BDA A(Q` (D ABBA [z"`0BGA L@  DABA ,-z@8H$BDA A(Q` (D ABBA y"`8BDA A(Q` (D ABBA y"`8BDA A(Q` (D ABBA 4y"`8P|BDA A(Q` (D ABBA Ly"`8DBDA A(Q` (D ABBA y"`8 BDA A(Q` (D ABBA <x"`0XBGA L@  DABA x@8TBDA A(Q` (D ABBA sx`0BGA L@  DABA 48x@0P\BGA L@  DABA x@8BDA A(Q` (D ABBA w"`$DN,DN(4DN@< T8DN l@D   C O A 0BGA L@  DABA v@(lvAGL0Q DAF v0T CAA \0P02<~BHA OP!  DABA 2i1P02=~BHA OP!  DABA $3h1P0@3 ?~BHA OP!  DABA t3h1P$3<@>ADA uAAH3T@BBB B(E0A8JP& 8D0A(B BBBA 4}h>P$$42ADA ZGFL4sh ACA@l4JBBB E(D0DP 0D(A BBBJ 4h[P04\A@BHA TP  DABA 5h:P0 5LB@BHA TP  DABA T5h:P0p5AF!C0C+C&C9CBC(F4FF!C0C+C&C9CBC(F4F0CA0CAeC0CACAFAFAFAFAFAFAFAFAFFAFAFAFAFAFAFAFAFAFAFAD;EFAAAAAAAAAFFG G+G#GFG>G`GXGAAAA HFGFFFGFFFGGGGGFFGGGGGGGG@GG GG@GG HHF3`s @XF oGhp nP0yaH`w 0s R PX@W_decimal.cpython-311-x86_64-linux-musl.so.debugE ?U.shstrtab.note.gnu.property.note.gnu.build-id.gnu.hash.dynsym.dynstr.rela.dyn.relr.dyn.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.dynamic.got.data.bss.gnu_debuglink 0$1o4; 88C K&&UH<H<_@@e@@k33q@@l y 7((0088# ##( #4#