ELF>@@8@XX uu@@@**l|| ?P?l||PtdFFFQtdRtdl||@@V-  %)& *'+ #$,"(!  ' b '()*+,CYn{\g Mola Y.-qQx? <8 R"  9k l;__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_FalseStructPyEval_SaveThreadPyEval_RestoreThread_Py_TrueStruct__stack_chk_failmallocfreePyFloat_FromDoublePyExc_ValueErrorPyErr_SetStringPyLong_FromLongLongsqrtsqrtfPyObject_GetAttrStringPyCallable_CheckPyObject_Call_Py_DeallocPyImport_ImportModulePyExc_RuntimeErrorPyErr_FormatmemsetPyDict_SizePyExc_TypeError_Py_NoneStructPyType_IsSubtypepystr_aPyDict_GetItempystr_axispystr_ddofPyErr_OccurredPyInit_reducePyModule_Create2PyCapsule_TypePyCapsule_GetPointerPyUnicode_InternFromStringPyErr_PrintPyExc_ImportErrorPyExc_AttributeErrorlibc.so.6GLIBC_2.4GLIBC_2.2.5$ORIGIN/../../..XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXii ui | | ȹEй@  ?E(8@7EHX `0Eh x)E`"E`EȺغE@E@ E(8`@DHX`Dh x DD` ~*~~~~~~,~~    ( 08@(HPX`hpx !"#$%&H'H5^%^@%_fHH_HtHH=HH9tHo^HtH=pH5iH)HHHHHHtHN_Ht=3u(UH=@_Ht H=<_Wy ]fAWAVAUATUHSHHHF8Lcffo$H~ Ln(Lcp CHǃ@C(AEu;fo$1CHCHEH8H[]A\A]A^A_fE@։ƒHwE|$DD{HCHCEIcEHIITIDL)HHHHHCISf.HHCIEHHCI*tTHԙ DDHCHCE~KTIEHuII9u1@tDHHH1HHE H@HHCHE(H(AD$IEHCAEILH9} HKHȉSHL9uHcSIHHSHI1fDA9t1HcLI@8ILI8H I8HK0HK0HI9uDHH(fDH1HDHH971@HHSHIf.DHq[HDAVH1AUATUSHPdH%(H$H1HH[LD$(L\$0IM9Lc$Ht$IH|$H$8J,H1H PHHH9tE.zL[ZHZHH$HdH+%(HP[]A\A]A^fH+MMy CfIIH@8HH)It%L8HP8L8IL9}HLJT8I@M9tIBLYHfZH]YAVH1AUATUSHPdH%(H$H1HHy3ZLD$(L\$0IM9Lc$Ht$IH|$H$8J,H1H PHHH9tEf.zL YHsYHH$HdH+%(HP[]A\A]A^ÐH+MMy CfIIH@8HH)It%L8HP8L8IL9}HLJT8I@M9tIBLmXHYH^xXAVH1AUATUSHPdH%(H$H1HH)XLD$(L\$0IM9Lc$Ht$IH|$H$8J,H1H PHHH9tE.{LWHdXHH$HdH+%(HP[]A\A]A^fH+MMy CfIIH@8HH)It%L8HP8L8IL9}HLJT8I@M9tIBLWHWH](WAVH1AUATUSHPdH%(H$H1HHWLD$(L\$0IM9Lc$Ht$IH|$H$8J,H1H PHHH9tEf.{LjVHWHH$HdH+%(HP[]A\A]A^ÐH+MMy CfIIH@8HH)It%L8HP8L8IL9}HLJT8I@M9tIBLUH6VH^UAWHAVAUATUSHLH LP(dH%(H$1HP8Hct$Dfo]H@D$@HcJ D$hfoPH$xD$HtvGD$@~mA119LcJDxIJxIHJxHT$pHT$pH9tA9uIHT$PIHHT$HH9uHD$PHH1HD$X Ld$@HHhH$x1H‹D$@xLhIQUHl$HIHHAvI~ HH~eH@Hv;QH1HHHHAD H9uHHMlH9t HHIDHH9LSH$dH+%(\HĘL[]A\A]A^A_H<KTHT$hIHD$pH9OHct$@HL|$E1H)H|$PLt$MHL$|I IHHL$x11fA.z AHHIH9uHLILX1IO,MH|$ L$H\$0Ht$8HL$(HDI4AMH$HI//v/AUAMH4$LzA/q/H~IwoHIHH/wHH9L9HLI9HM4$H4$H9JHH|$ H\$0Ht$8HL$(AEcCHt$`HL$xLIE1L<$M4H8IH@8AHI)ILL8HP8IL9}L<$EH\$`NxHL$xJTxHD$II9L|$Lt$HL$hL-QJHALAI9AIHuDM/V/9AE(AM5HD$`L$xDM$A I~IAH_(L9uXYmPf.fAUH1ATUSHhdH%(H$X1Hl$H9PH\$@IHD$8H9Lc\$LD$H)E1LL$ H$HfJlM~"H1fDHLYXI9uMxMHL @IHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9{L$ LTOL$ H$XdH+%(u!Hhf[Z]A\A]%xOf4Of.fAUH1ATUSHhdH%(H$X1Hl$HOH\$@IHD$8H9Lc\$LD$H)E1LL$ H$HfJlM~"H1fDHLYXI9uMxMHL @IHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9{L$LML$H$XdH+%(uHhf([]A\A]%NfMAVH1AUATUSH`dH%(H$X1Ld$LHl$@H\$HHH'NIHD$8H9Lc\$LD$ H)E1H$H >AO$@H~%H1fD/r(E1HLH9uMxJLLIHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9{EuEL$ LLL$ H$XdH+%(ucH`f[Z]A\A]A^%L QHxLH5a H8`LH$XdH+%(uH`1[]A\A]A^%Lf.AVH1AUATUSH`dH%(H$X1Ld$LHl$@H\$HHH"gLIHD$8H9Lc\$LD$ H)E1H$H AO$@H~'H1fDf/rf(E1HLH9uMxPLL#IHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9sEuAL$LJL$H$XdH+%(u_H`f([]A\A]A^%J HJH5 H8JH$XdH+%(uH`1[]A\A]A^aJfAVH1AUATUSH`dH%(H$X1Ld$LHl$@H\$HHHJIHD$8H9Lc\$LD$ H)E1H$HAO$@H~%H1fD /r(E1HLH9uMxJLLIHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9{EuAD$ LID$ H$XdH+%(u_H`Z[]A\A]A^%-IHHH5- H8HH$XdH+%(uH`1[]A\A]A^HAVH1AUATUSH`dH%(H$X1Ld$LWHl$@H\$HHH"HIHD$8H9Lc\$LD$ H)E1H$H &AO$@H~'H1fDf/rf(E1HLH9uMxPLL#IHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9sEuAL$LOGL$H$XdH+%(u_H`f([]A\A]A^%uG 5HDGH5uH8,GH$XdH+%(uH`1[]A\A]A^FfAW1AVAHAUATUSHhdH%(H$X1Hl$HLGHL$@IHD$8H9?Hc\$LD$IE1LL$LT$ I)E1H$HLlfDM~"H1fDfH* LXL9uHLH(IHH@8HH)HL8HP8L8IL9}HLAHTHIM9iMHt$0LD$EtH$HIc L9HD$8fI*^HHc\$H|$E1fLT$ H$HHlH~,I1fDfHA* $M\YXH9uHxKHIfMIH@8HL)It%L8L`8L8IM9}ILNdHIL9sI)fI*^T$L|DT$H$XdH+%(u@Hhf([]A\A]A^A_%DAHffE1=DDAW1AVAHAUATUSHhdH%(H$X1Hl$HDHL$@IHD$8H9?Hc\$LD$IE1LL$LT$ I)E1H$HLlfDM~#H1fDfHH* LXL9uHLH'IHH@8HH)HL8HP8L8IL9}HLAHTHIM9iMHt$0LD$EtH$HIc L9HD$8fI*^HHc\$H|$E1fLT$ H$HHlH~,I1fDfHI* $M\YXH9uHxKHIfMIH@8HL)It%L8L`8L8IM9}ILNdHIL9sI)fI*^T$LAT$H$XdH+%(u@Hhf([]A\A]A^A_%AAHffE1ADAW1AAVHAUATUSHhdH%(H$X1Hl$H2AHL$@IHD$8H9>Lcd$L$I1HL$LL$I)1L\$ NtfE1H$HM~&H1fD.zXIHLL9uMLL$@IHH@8HH)HH8HP8L8HH9}HLHTHHI9jL$HL$Ht$0tH$HIc%L9HD$8fI*^HLcd$LL$1fL\$ H$HJlM~+H1fD.z \YXHLI9uMxLHMIIHB8HH)It%L8Hr8L8IL9}HLJtHHH9sI)fI*^$L%?$H$XdH+%(uIHhf[Z]A\A]A^A_%F?fDLffE1>fDAW1AAVHAUATUSHhdH%(H$X1Hl$HLcd$L$I1HL$LL$I)1L\$ NtfE1H$HM~'H1fDf.zXIHLL9uMLL#IHH@8HH)HH8HP8L8HH9}HLHTHHI9jL$HL$Ht$0tH$HIcL9ff(HD$8I*^HLcd$LL$1fL\$ H$HJlM~,H1fDf.z \YXHLI9uMxKHMfIIHB8HH)It%L8Hr8L8IL9}HLJtHHH9sI)fI*^$Lm<$H$XdH+%(uAHh[]A\A]A^A_%<fDLffE1.<fDAVH1AUATUSH`dH%(H$X1Hl$H<Ll$@IHD$8L9MLc\$LLD$E1LL$ H)1fH$HJlM~"H1fDfH* LXI9uMHL(IHH@8HH)HH8HP8L8HH9}HLHTHII9jfHnfInLflI)L$0tH$HD$L:H~[H$XdH+%(D$u_fH*^H`[]A\A]A^%:DpLhL]:H$XdH+%(u bZ:fAVH1AUATUSH`dH%(H$X1Hl$H:Ll$@IHD$8L9MLc\$LLD$E1LL$ H)1fH$HJlM~#H1fDfHH* LXI9uMHL'IHH@8HH)HH8HP8L8HH9}HLHTHII9jfHnfInLflI)L$0tH$HD$L8H~[H$XdH+%(D$u_fH*^H`[]A\A]A^%9DpLhL8H$XdH+%(u 8fAWH1AVAUATUSHhdH%(H$X1H\$H58Ll$@IHD$8L9\LcT$MH|$E1LD$ I)E1fH$HJ,1@H~&H1fD.zXHHLH9uMHL$@IHH@8HH)HL8HP8L8IL9}HLAHTHIM9ifHnfInfl)D$0EtH$HL$ L7H~iH$XdH+%(L$ umfH*^fZHh[]A\A]A^A_%(7AhL`L6H$XdH+%(u 6AWH1AVAUATUSHhdH%(H$X1H\$HU7Ll$@IHD$8L9LLcT$MH|$E1LD$ I)E1fH$HJ,1@H~'H1fD f.zXHHLH9uMHL#IHH@8HH)HL8HP8L8IL9}HLAHTHIM9ifHnfInfl)L$0EtH$HD$L:5H~YH$XdH+%(D$u]fH*^Hh[]A\A]A^A_%P5AxLpL4H$XdH+%(u 4AUH1ATUSHhdH%(H$X1Hl$HC5H\$@IHD$8H9Lc\$LD$H)E1LL$ H$HfJlM~#H1fD.zXHLL9uMxLHLIHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9{L$ L3L$ H$XdH+%(u!Hhf[Z]A\A]%3f3f.fAUH1ATUSHhdH%(H$X1Hl$H)3H\$@IHD$8H9Lc\$LD$H)E1LL$ H$HfJlM~$H1fDf.zXHLL9uMxSHL&f.IHH@8HH)Ht%H8HP8L8HH9}HLHTHIL9sL$L<2L$H$XdH+%(uHhf([]A\A]%d2f 2AVH1AUATUSHPdH%(H$H1HH2L\$0HHD$(I9Lc$H|$I)E1LD$H$81JH~I1fDA$HMH9uMxPHM#IIH@8HH)It%L8HP8L8IL9}HLJT8IM9{HcH0H$HdH+%(uHPH[]A\A]A^%110fAVH1AUATUSHPdH%(H$H1HHC1LT$0HHD$(I9Lc $Ht$I)E1H|$H$8N1H~!I1fDI$HIHHH9uMxNLM!DIIH@8HH)It%L8HP8L8IL9}HLJT8IM9{H/H$HdH+%(uHPH[]A\A]A^%01/DAVH1AUATUSHPdH%(H$H1ILIHl$0H\$HHH/IHD$(H9Lc$LL$H)E1L$8O$H~L1fD 9LHLH9uMxJLLIHH@8HI)Ht%H8HP8L8HH9}HMHT8IL9uHcLc.H$HdH+%(u]HPH[]A\A]A^%P/Hi.H5RH8Q.H$HdH+%(uHP1[]A\A]A^H .DAVH1AUATUSHPdH%(H$H1ILLt$0Hl$LHHY.HIHD$(I9Lc$MLD$E1H$8I)O$H~ H1fDH H9HLHLH9uMxOLL"fDIHH@8HH)Ht%H8HP8L8HH9}HLHT8IM9{L,H$HdH+%(uTHPH[]A\A]A^%-H,H5H8,H$HdH+%(uHP1[]A\A]A^},DAVH1AUATUSHPdH%(H$H1IL)Hl$0H\$HHH,IHD$(H9Lc$LL$H)E1L$8O$H~L1fD 9OHLH9uMxJLLIHH@8HI)Ht%H8HP8L8HH9}HMHT8IL9uHcLC+H$HdH+%(u[HPH[]A\A]A^%0,HI+H5zH81+H$HdH+%(uHP1[]A\A]A^û*AVH1AUATUSHPdH%(H$H1ILLt$0Hl$LHH9+HIHD$(I9Lc$MLD$E1H$8I)O$H~ H1fDH H9HOHLH9uMxOLL"fDIHH@8HH)Ht%H8HP8L8HH9}HLHT8IM9{L)H$HdH+%(uTHPH[]A\A]A^%*H)H5H8)H$HdH+%(uHP1[]A\A]A^])DAVH1AUATUSHPdH%(H$H1IL )Hl$0IHD$(H9Hc$LL$H)E1LT$H$8E1M$f.M~H1fDHDLI9uHxNLH!DIHH@8HH)Ht%H8HP8L8HH9}HLHT8II9uIcL3(H$HdH+%(uHPH[]A\A]A^% )1(fDAVH1AUATUSHPdH%(H$H1HH(Hl$0IHD$(H9Lc$LD$H)E1LL$H$8N$1M~H1fDHHLL9uMxNLL!DIHH@8HH)Ht%H8HP8L8HH9}HLHT8IL9uL&H$HdH+%(uHPH[]A\A]A^%'1&AW1AAVHAUATUSHhdH%(H$X1Hl$HL'HL$@IHD$8H9OHc\$HL$IE1LL$LT$ I)E1H$HLlfDM~"H1fDfH*LXI9uHLH(IHH@8HH)HH8HP8L8HH9}HLAHTHIM9iMHt$0HL$EtH$HIcL9ff(HD$8I*^H*Lc\$H|$E1fLD$ H$HJ\@H~+H1fDfH*ML\YXH9uMxLHMIIH@8HH)It%L8Hh8L8IL9}HLJlHIL9sI)fI*^ff.wnQD$Ln$D$H$XdH+%(uJHh[]A\A]A^A_%$fDAHxffE1$%$f.AW1AAVHAUATUSHhdH%(H$X1Hl$H|$HL$@IHD$8H9OHc\$HL$IE1LL$LT$ I)E1H$HLlfDM~#H1fDfHH*LXI9uHLH'IHH@8HH)HH8HP8L8HH9}HLAHTHIM9iMHt$0HL$EtH$HIcL9ff(HD$8I*^H*Lc\$H|$E1fLD$ H$HJ\@H~,H1fDfHH*ML\YXH9uMxKHMfIIH@8HH)It%L8Hh8L8IL9}HLJlHIL9sI)fI*^ff.wnQD$L!D$H$XdH+%(uJHh[]A\A]A^A_%!fDAHxffE1-"U!f.AW1AAVHAUATUSHhdH%(H$X1Hl$H!HL$@H$HD$8H9MLcd$HL$I1LL$L\$ I)1H$HNtfE1M~'H1fDf.zXIHLL9uMLL#IHH@8HH)HH8HP8L8HH9}HLHTHHI9jHt$0HL$tH$HIcL9ff(HD$8I*^H/Hc\$LD$E1fLL$ H$HHlf.M~,H1fDf.z \YXHLI9uHxLHIfIIHB8HH)It&L8Hr8L8MgL9}HLJtHIL9rI)fI*^ff.wlQD$H<$D$H$XdH+%(uGHh[]A\A]A^A_%@LxffE1^f.@AW1AAVHAUATUSHhdH%(H$X1Hl$H"HL$@H$HD$8H9PLcd$HL$I1LL$L\$ I)1H$HNtfE1M~&H1fD.zXIHLL9uMLL$@IHH@8HH)HH8HP8L8HH9}HLHTHHI9jHt$0HL$tH$HIcL9HD$8f(I*^H0Hc\$LD$E1fLL$ H$HHlM~+H1fD.z \YXHLI9uHxMHIIIHB8HH)It&L8Hr8L8MgL9}HLJtHIL9rI)fI*^f.wxQD$H<$D$H$XdH+%(uSHhZ[]A\A]A^A_%)fLxf{fE1Cf.HHXwH HtHHH@HHHÐHHDHH]XwH HtHHH@HHHÐAUIATIUHSHH=XHtqHHHHsLLHHH tH[]A\A]HD$HHD$H[]A\A]fH=H|WHHoHiH5H8a1DH tkHDHH5H811jHHH5H811?DH uH1%HDATUSHPHW8LO dH%(H$HGfoat$LcZ HW$D$(foQLW(H$8D$P$~xAHc11=@HcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$HU1HhH$81H‹$xHL`IsH{ HHUHH~ 1LHNH$HdH+%(uHPH[]A\Ff.@kf.ATUSHPHW8LO dH%(H$HGfot$LcZ HW$D$(foLW(H$8D$P$~xAHc11=@HcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$HBT1HhH$81H‹$xHL`sH{ HHD$0HD$HHSuHHH~LHH$HdH+%(u+HPH[]A\ÐHH~1Lwf.D;f.AWAVAUATUSHhHW8LO dH%(H$XGfot$HcJ HWD$D$8foLW(H$HD$tyPT$~pAHc119LcJDHIJHIHJHHT$@HT$@H9tA9uIHT$ IHHT$H9uHD$ HH1HD$(HvRHh1H$HH‹D$xH|$L`HHT$8HHD$@H9H $ILL$E1HD$LT$ I)Lt$fDM7H$H1Ҹ19OHLL9uCHcL$HL$0H}L$HIE1L0H8HH@8AHH)HHH8HP8HH9}EH\$0HHHH$HHTHIM9.HD$H $HD$8HH$XdH+%(uiHhH[]A\A]A^A_HD$0H$HDLvHH5x1H8}DAWAVAUATUSHhHW8LO dH%(H$XGfo t$HcJ HWD$D$8foLW(H$HD$tyPT$~pAHc119LcJDHIJHIHJHHT$@HT$@H9tA9uIHT$ IHHT$H9uHD$ HH1HD$(HOHh1H$HH‹D$xH|$L`HHT$8HHD$@H9H $ILL$E1HD$LT$ I)Lt$fDM7H$H1Ҹ19LHLL9uCHcL$HL$0H}L$HIE1L0H8HH@8AHH)HHH8HP8HH9}EH\$0HHHH$HHTHIM9.HD$H $HD$8HH$XdH+%(uiHhH[]A\A]A^A_HD$0H$HDLvHH51H8DAUATUSHXHW8LO dH%(H$HGfo/t$LcZ HW$D$(foLW(H$8D$t~P$~vAHc11?fDHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$HLIHh1H$8H‹$xH|$L`H IHD$0H9D$(Hc<$MDHD$ LT$HM~8L\$H$8fH1HD$ H9HLHLHI9uIIT$H|$ HL$8LHE1M3fDH8HH@8AHI)HHH8HP8HH9}EHl$ L8HL$8HT8HD$(HHD$(H;D$0LH$HdH+%(uQHXH[]A\A]DHD$ L$8DM~H H51H8  f.DAUATUSHXHW8LO dH%(H$HGfoOt$LcZ HW$D$(fo?LW(H$8D$t~P$~vAHc11?fDHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$HIIHh1H$8H‹$xH|$L`H+ IHD$0H9D$(Hc<$MDHD$ LT$HM~8L\$H$8fH1HD$ H9HOHLHI9uIIT$H|$ HL$8LHE1M3fDH8HH@8AHI)HHH8HP8HH9}EHl$ L8HL$8HT8HD$(HHD$(H;D$0L1 H$HdH+%(uQHXH[]A\A]DHD$ L$8DM~H H51H8  f.DAWAVAUATUSHxHW8LO dH%(H$hGfokt$$HcJ HWD$ D$HfoZLW(H$XD$(tyPT$ ~pAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH1HD$8 Ld$ HFHh1H$XH‹D$ xH|$(HD$LhF HT$HHHD$PH91Hcl$ HD$IE1HL$LL$(I)LT$0FM<Ff.MH$X1(D/r(1HLL9uCLHl$@HL$XLHE1L1@H8HH@8AHH)HHH8HP8HH9}EH\$@HXHH$XHTXIM9HD$HL$HD$HH.H$hdH+%(ueHD$Hx[]A\A]A^A_@(HD$@H$XDLnH H5H8HD$AWAVAUATUSHxHW8LO dH%(H$hGfo[t$$HcJ HWD$ D$HfoJLW(H$XD$(tyPT$ ~pAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH1HD$8 Ld$ HCHh1H$XH‹D$ xH|$(HD$Lh6HT$HHHD$PH91Hcl$ HD$IE1HL$LL$(I)LT$0NM<:f.MH$X1f(@f/rf(1HLL9uCLHl$@H~L$XLHE1L/fH8HH@8AHH)HHH8HP8HH9}EH\$@HXHH$XHTXIM9HD$HL$HD$HHH$hdH+%(umHD$Hx[]A\A]A^A_@f(HD$@H$XDLfHH5H8HD$AVAUATUSHPHW8LO dH%(H$HGfoMt$LcZ HW$D$(fo=LW(H$8D$t|P$~tAHc11=@HcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$H@IHh1H$8H‹$xH|$L`Ha+IHD$(H9D$0Lc$1OLDHD$Hx5L\$H¾IH$8D 9|HHL)HuII|$LD$ Mx|L$8LLE1M-H8HH@8AHI)HHH8HP8HH9}EHl$ L8HL$8HT8HD$(HHD$(H;D$0LQH$HdH+%(uQHPH[]A\A]A^HD$ L$8DM~H9H51H8f.DAVAUATUSHPHW8LO dH%(H$HGfot$LcZ HW$D$(fo}LW(H$8D$t|P$~tAHc11=@HcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$H>IHh1H$8H‹$xH|$L`HakIHD$(H9D$0Lc$1OLDHD$Hx5L\$H¾IH$8D 9HHL)HuII|$LD$ Mx|L$8LLE1M-H8HH@8AHI)HHH8HP8HH9}EHl$ L8HL$8HT8HD$(HHD$(H;D$0LH$HdH+%(uQHPH[]A\A]A^HD$ L$8DM~HyH51H8_Gf.DAWAVAUATUSHXHW8LO dH%(H$HGfot$LcZ HW$D$(foLW(H$8D$tzP$~rAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$HV;IHh1H$8H‹$xH|$L`HIHD$(H9D$0IHc<$1MDHD$HHD$ x@Ll$HMIH$8f.H L9IHHL)HD$ HuIIt$H|$ HL$8LIE1M1@H8IH@8AHI)ILH8HP8HH9}EHl$ N8HL$8JT8HD$(HHD$(H;D$0LH$HdH+%(uQHXH[]A\A]A^A_ÐHD$ L$8DM~HH5"1H8gf.DAWAVAUATUSHXHW8LO dH%(H$HGfot$LcZ HW$D$(foLW(H$8D$tzP$~rAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$Hv8IHh1H$8H‹$xH|$L`HIHD$(H9D$0IHc<$1MDHD$HHD$ x@Ll$HMIH$8f.H L9|IHHL)HD$ HuIIt$H|$ HL$8LIE1M1@H8IH@8AHI)ILH8HP8HH9}EHl$ N8HL$8JT8HD$(HHD$(H;D$0LH$HdH+%(uQHXH[]A\A]A^A_ÐHD$ L$8DM~HH51H8f.DAWAVAUATUSHxHW8LO dH%(H$hGfo t$$HcJ HWD$ D$HfoLW(H$XD$(tyPT$ ~pAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH1HD$8 Ld$ H5Hh1H$XH‹D$ xH|$(HD$LhHT$HHHD$PH91Hcl$ HD$IE1HL$LL$(I)LT$0M<f.MH$X1(D/r(1HLL9uCLHl$@HL$XLHE1L1@H8HH@8AHH)HHH8HP8HH9}EH\$@HXHH$XHTXIM9HD$HL$HD$HHH$hdH+%(ueHD$Hx[]A\A]A^A_@(HD$@H$XDLnHH5H8HD$pAWAVAUATUSHxHW8LO dH%(H$hGfot$$HcJ HWD$ D$HfoLW(H$XD$(tyPT$ ~pAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH1HD$8 Ld$ H|2Hh1H$XH‹D$ xH|$(HD$LhHT$HHHD$PH91Hcl$ HD$IE1HL$LL$(I)LT$0M<f.MH$X1f(@f/rf(1HLL9uCLHl$@H~L$XLHE1L/fH8HH@8AHH)HHH8HP8HH9}EH\$@HXHH$XHTXIM9HD$HL$HD$HHH$hdH+%(umHD$Hx[]A\A]A^A_@f(HD$@H$XDLfHH5ZH8yHD$XAWAVAUATUSHhHW8LO dH%(H$XGfot$HcJ HWD$D$8foڹLW(H$HD$t}PT$~tAHc119LcJDHIJHIHJHHT$@HT$@H9tA9uIHT$ IHHT$H9uHD$ HH@1HD$(Hr/HhH$H1H‹D$xL`HLL$IMDHT$8HD$@H9HD$ILT$ E1I)L|$LfDMgH$H11H LI9uC HcL$HL$0HL$HIE1L,$L1@H8HH@8AHH)HHL8HP8IL9}L,$EHl$0HHHH$HHTHIM92HD$IHD$8LH$XdH+%(|HhH[]A\A]A^A_H-sH{ H~H1LfHD$0H$Hlf.LB1kAWAVAUATUSHxHW8LO dH%(H$hGfot$$HcJ HWD$ D$HfoLW(H$XD$(t}PT$ ~tAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH@1HD$8 Ll$ Hx,HhH$X1H‹D$ xL`HLL$(HD$M]HT$HHD$PH9 Lct$ HD$IE1LT$0I)KLDMH$X1fɐHLYXL9uC Lt$@ML$XHLE1Ll$L7f.H8HH@8AHH)HHL8HP8IL9}Ll$EHl$@HXHH$XHTXIM9!HD$HD$HH|$H$hdH+%(HxH[]A\A]A^A_H*sH{ H~H1LfHD$@H$Xef.L;fYAWAVAUATUSHXHW8LO dH%(H$HGfot$LcZ HW$D$(fo۳LW(H$8D$tzP$~rAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$Hv)IHh1H$8H‹$xH|$L`HIHD$0H9D$(Hc<$1MDE1fHD$HrHL$Hf(AHH$8@f/r f(HE1HH)HuEI4$IH|$ HL$8LIE1M0H8IH@8AHI)ILH8HP8HH9}EHl$ N8HL$8JT8HD$(HHD$(H;D$0LEH$HdH+%(HXH[]A\A]A^A_@HD$ L$8DEM^AH~H5Ǭ1H8doL&aHRH51H88CDAWAVAUATUSHxHW8LO dH%(H$hGfot$$HcJ HWD$ D$HfoLW(H$XD$(t}PT$ ~tAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH@1HD$8 Ll$ H(&HhH$X1H‹D$ xL`HLL$(HD$M]HT$HHD$PH9 Lct$ HD$IE1LT$0I)KLDMH$X1fɐHLYXL9uC Lt$@ML$XHLE1Ll$L7f.H8HH@8AHH)HHL8HP8IL9}Ll$EHl$@HXHH$XHTXIM9!HD$HD$HH|$H$hdH+%(HxH[]A\A]A^A_H$sH{ H~H1L|fHD$@H$Xef.L;f AWAVAUATUSHhHW8LO dH%(H$XGfot$HcJ HWD$D$8foLW(H$HD$t}PT$~tAHc119LcJDHIJHIHJHHT$@HT$@H9tA9uIHT$ IHHT$H9uHD$ HH@1HD$(H"#HhH$H1H‹D$xL`HLL$IMDHT$8HD$@H9L,$ILT$ E1HD$I)L|$DMgH$H11HLL9uC4HcL$HL$0H}L$HIE1L0H8HH@8AHH)HHH8HP8HH9}EHl$0HHHH$HHTHIM96HD$L,$HD$8LH$XdH+%(HhH[]A\A]A^A_H!sH{ H~H1LfHD$0H$Hhf.L>1AWAVAUATUSHXHW8LO dH%(H$HGfot$LcZ HW$D$(foLW(H$8D$tzP$~rAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$H6 IHh1H$8H‹$xH|$L`HIHD$0H9D$(Hc<$1MDE1fHD$HbHL$H(AHH$8D/r (HE1HH)HuEI4$IH|$ Hx}L$8LIE1M.H8IH@8AHI)ILH8HP8HH9}EHl$ N8HL$8JT8HD$(HHD$(H;D$0LEH$HdH+%(HXH[]A\A]A^A_@HD$ L$8DEMfAHNH51H84wLiH"H5`1H8KDAWAVAUATUSHXHW8LO dH%(H$HGfo{t$LcZ HW$D$(fokLW(H$8D$tzP$~rAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$HIHh1H$8H‹$xH|$L`H[IHD$0H9D$(Hc<$1MDE1fHD$HbHL$H(AHH$8D/r (HE1HH)HuEI4$IH|$ Hx}L$8LIE1M.H8IH@8AHI)ILH8HP8HH9}EHl$ N8HL$8JT8HD$(HHD$(H;D$0LaEH$HdH+%(HXH[]A\A]A^A_@HD$ L$8DEMfAHH51H8wLiHH501H8KDAWAVAUATUSHXHW8LO dH%(H$HGfoKt$LcZ HW$D$(fo;LW(H$8D$tzP$~rAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI1HD$HIHh1H$8H‹$xH|$L`H+IHD$0H9D$(Hc<$l1MDE1fHD$HrHL$Hf(AHH$8@f/r f(HE1HH)HuEI4$IH|$ HL$8LIE1M0H8IH@8AHI)ILH8HP8HH9}EHl$ N8HL$8JT8HD$(HHD$(H;D$0L)EH$HdH+%(HXH[]A\A]A^A_@HD$ L$8DEM^AHH5g1H8oLaHH51H8C}DAWAVAUATUSHxHW8LO dH%(H$hGfo t$$HcJ HWD$ D$HfoLW(H$XD$(t}PT$ ~tAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH@1HD$8 Ll$ HHhH$X1H‹D$ xL`HLL$(HD$M]HT$HHD$PH9 Lct$ HD$IE1LT$0I)KLDMH$X1fɐf.zXHLI9uC Lt$@ML$XHLE1Ll$L5H8HH@8AHH)HHL8HP8IL9}Ll$EHl$@HXHH$XHTXIM9!HD$HD$HH|$H$hdH+%(HxH[]A\A]A^A_HsH{ H~H1LfHD$@H$Xef.L;fiAWAVAUATUSHxHW8LO dH%(H$hGfot$$HcJ HWD$ D$HfoLW(H$XD$(t}PT$ ~tAHc119LcJDXIJXIHJXHT$PHT$PH9tA9uIHT$0IHHT$(H9uHD$0HH@1HD$8 Ll$ HxHhH$X1H‹D$ xL`HLL$(HD$M]HT$HHD$PH9 Lct$ HD$IE1LT$0I)KLDMH$X1fɐ.zXHLI9uC Lt$@ML$XHLE1Ll$L6fH8HH@8AHH)HHL8HP8IL9}Ll$EHl$@HXHH$XHTXIM9!HD$HD$HH|$H$hdH+%(HxH[]A\A]A^A_HsH{ H~H1LfHD$@H$Xef.L;fYAVAUATUSHPHW8LO dH%(H$HGfot$LcZ HW$D$(foݚLW(H$8D$|P$~tAHc119HcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$HrIHhH$81H‹$xLhHH|$HH2HD$(H9D$0NHD$ Lc$O HLT$H$81@HH HD$ LHH9uIIMLD$ ML$8LLE1L3fDH8HH@8AHH)HIH8HP8HH9}ELd$ H8HH$8HT8HD$(HHD$(H;D$0}RHD$ H|$H16HsH{ H~H1LHH$HdH+%(u@HPH[]A\A]A^DHD$ H$8Pf.L&ZfAUATUSHXHW8LO dH%(H$HGfot$LcZ HW$D$(foߗLW(H$8D$~P$~vAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$Hr 1Hh1H$8H‹$xLhHHL$HHHD$0IH9D$(/H@Ht$H$81HHH9f.z1AEHc $IHL$ Hx~L$8IE1L1@H8HH@8AHH)HIH8HP8HH9}ELd$ H8HH$8HT8HD$(HHD$(H;D$0}HHL$HAfDH sH{ HH~LHH$HdH+%(uBHXH[]A\A]fHD$ H$8Xf.L.zfAUATUSHXHW8LO dH%(H$HGfot$LcZ HW$D$(foLW(H$8D$~P$~vAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$H 1Hh1H$8H‹$xLhHHL$HHHD$0IH9D$(/H@Ht$H$81HHH9.z1AEHc $IHL$ HxL$8IE1L2DH8HH@8AHH)HIH8HP8HH9}ELd$ H8HH$8HT8HD$(HHD$(H;D$0}HHL$H@fDH1 sH{ HH~L.HH$HdH+%(uBHXH[]A\A]fHD$ H$8Xf.L.fAVAUATUSHPHW8LO dH%(H$HGfo-t$LcZ HW$D$(foLW(H$8D$|P$~tAHc119HcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$HIHhH$81H‹$xLhHLL$HM2HD$(H9D$0NHD$ Hc<$MMLT$H$81@HHT$ LHHHHI9uIIuH|$ HxL$8LHE1M0H8HH@8AHI)HIH8HP8HH9}ELd$ L8HL$8HT8HD$(HHD$(H;D$0}RHD$ LL$M1=H1sH{ H~H1L,HH$HdH+%(u@HPH[]A\A]A^DHD$ L$8Pf.M&fAUATUSHXHW8LO dH%(H$HGfo/t$LcZ HW$D$(foLW(H$8D$~P$~vAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$H1Hh1H$8H‹$xLhHHL$HH(HD$0IH9D$(<H@Ht$H$81HHH9.{AEHc $IHL$ HL$8IE1L3fDH8HH@8AHH)HIH8HP8HH9}ELd$ H8HH$8HT8HD$(HHD$(H;D$0}MHL$H16fHAsH{ HH~ 1LAHH$HdH+%(u5HXH[]A\A]@HD$ H$8XfL6fAUATUSHXHW8LO dH%(H$HGfoOt$LcZ HW$D$(fo?LW(H$8D$~P$~vAHc11;fHcHD8IH8IHH8HT$0HT$0H9tA9uIHT$IHHT$H9uHD$HI@1HD$H1Hh1H$8H‹$xLhH9HL$HH(HD$0IH9D$(<H@Ht$H$81HHH9f.{AEHc $IHL$ HL$8IE1L2DH8HH@8AHH)HIH8HP8HH9}ELd$ H8HH$8HT8HD$(HHD$(H;D$0}MHL$H17fHasH{ HH~ 1LaHH$HdH+%(u5HXH[]A\A]@HD$ H$8XfL6fAWAVAUATUSHhHW8LO dH%(H$XGfokt$HcJ HWD$D$8foZLW(H$HD$t}PT$~tAHc119LcJDHIJHIHJHHT$@HT$@H9tA9uIHT$ IHHT$H9uHD$ HH@1HD$( Ld$HHhH$H1H‹D$xH$LxOLD$HMnL\$8Lt$@M9#Lcl$LH\$HLT$ MH1]HHHHA H9uHHeM$Hr]I$QHD$PLD$H$hDf1fH*^Df.z \YXHLI9uL)fH*^fH|$fDD$x \1ffL)H*^f.AWAVAAUATUSHHW8LO dH%(H$Gfo8\t$DHcJ HWD$@D$hfo'\LW(H$xD$HPT$@~}AHc11BfLcJDxIJxIHJxHT$pHT$pH9tA9uIHT$PIHHT$HH9uHD$PHH@1HD$XH HhH$x1HHD$@HD$D$@xH$Lx Hl$HHHLl$hLL$pM9VfMcHLct$@H*L)f%+[[f(^fH*LHMHD$H\$J ^fDHH$xHt$P1fHffH* HXH9uf(L9|CLt$`M|L$xHL1M/H8HHH@@I)HIH8HP8HH9}QLd$`LxHL$xHTxILl$hM9H\$fDHH$dH+%({H$HĘ[]A\A]A^A_f.H$pHx HH~HtH1"LHHHHA7H9uHHeML;51SHL AăAGEA9H<$HnH<$ ƒIG8H  g6HD$0DLfIH$LH$Hh[]A\A]A^A_HLE1E1111(IHE_HC(H$Ls fDH$HmHH0H $AHI?HDD$PHH $H0H $DD$PHIAEH$McI9usAMMcM9HH5FH8HD$PEH Ls HL{H0HL$PAHH$uHH5DH8VIG81ҋH(fH$H<$}HVH<$ AăuHIG8@ - duHD$HDL@H|$HHd*HiAGA;HDH5eEH81xIfL~XfH<$ IG8E1@@fDHD$DL>fDHD$DL&fDIH|$HhHH[]A\A]A^A_cfL{E1@HD$ DLfD@E1DHD$(DLfDHD$8DLfDL5 ]@HD$@DLffDLW~;fHq~H5AH8Q~@HQ~H5DH81~H5~H5CH8~HA~DD$\HHL$PH0#~HL$PLcD$\HH$AMc$~HwIG8$H^HH%gL ajLe"H #PHFeH=[CPHPHPHaPaH8f.fHHdL !jL$H %PHFcH=CPHgPH?PHaPH8f.fHHeL jLH PH!H=BPH&PH_1PH'PH8f.fHHL jLH PHf!H=LBPH+PH&PHPAH8f.fHHL .KjLu+H ,PHVH=APHǑPHoPHIPH8f.fHHvL jLUH NPH6H=APHgPHPHPH8f.fHHUyL jLH PH{H=@APH7PH_PH'P!H8f.fHHugL LjL-H .PH6jH=@PHGPHrPHKPH8f.fHH5dL OjL%0H 1PHlH=@PHoPHPHMPaH8f.fHHL 5jL8H >;PHH=8@PHPH/PH3PH8f.fHH%L UjLE[H nXPHvH=?PHPH_PHRPH8f.fHHL ?jL@H BPHvH=?PHWPHPH=PAH8f.fHHL PjL%DH ~EPHH=.?PHwPH_PHwOPH8f.fAWAVAUATUSHH(HcoLc(H {Ls1E1E1 y1H$xL $1ҿIALLDIHMHHH9uL1HLL$LL$$M4L MII6I8L9 I9}H9H2ML I8LpIfOHML9LM9oH<$L9HOH9ILH9dLL$IIH:MfH*D$LL $wH<$wHD$H $Hw$qK@HʃDmIE6IcHI|IDHH)L*MHH9uLsFwIMMMJ<1IAIoE1JLD$HT$LL$H<$vMH<$LL$HT$LD$IIKA9BIXI4 HH>HID9LM9M9HLL9LN$L$I9TLD$Hˋ2MMAIIT$IL$HHfnLHfpHLoHHfoffffffoH9ufsHfoHffHƒffffofsfoffffff~tA 9LHI9f*YT9K@H=ʃDmIEgIcHI|IDHH)L*MHH9uLsnrIMMMJ<1IAIoE1JLL$LD$HT$H<$qMH<$HT$LD$LL$IvTICDEDL$Lt$HDŽ$3AIH|$XfnLfpo@HfofffffofH9D$(ufoH|$`fsfoffffffofsfoffffff~tHT$@A49LHI9Df*YISZAWAVAUATUSHHw8HWdH%(H$GLW L_(L$dfom!v D$`H$$foZ!D$hPT$`~zHcE11CMcAJDŽ̘IBLB A(A0G  0D(A BBBF DD;BLB A(A0G 0D(A BBBF XBLB A(A0G 0D(A BBBF q 0C(A BBBA X$BLB A(A0G 0D(A BBBF q 0C(A BBBA XDXBLB A(A0G 0D(A BBBF q 0C(A BBBA XBLB A(A0G 0D(A BBBF q 0C(A BBBA D:BLB A(A0G 0D(A BBBF @D /BLB A(A0G 0D(A BBBF L BLE B(A0A8G\ 8A0A(B BBBL L $BLE B(A0A8G\ 8A0A(B BBBL L( BLE B(A0A8G^ 8A0A(B BBBJ Lx $ BLE B(A0A8GU 8E0A(B BBBO  ?Dg E N   ?Dg E NL KBED D(D@S (A ABBD W (A ABBC 4l BAA Gi  DABA  84 4BAA G|  DABB  L BBB B(A0A8Gb 8D0A(B BBBH LT HBBB B(A0A8Gb 8D0A(B BBBH < BBA A(Gt (D ABBF < xBBA A(Gt (D ABBF L$ BBB B(A0A8G 8A0A(B BBBE Lt BBB B(A0A8G 8A0A(B BBBE D "BBB A(A0GR 0D(A BBBD D %BBB A(A0GR 0D(A BBBD LT'BBB B(A0A8Gp 8D0A(B BBBB L*BBB B(A0A8Gp 8D0A(B BBBB L,BBB B(A0A8G 8A0A(B BBBE LDh/BBB B(A0A8G 8A0A(B BBBE L(2BBB B(A0A8Ga 8D0A(B BBBA L4BBB B(A0A8Gy 8D0A(B BBBI L47;BBB B(A0A8G 8D0A(B BBBE Lx:BBB B(A0A8Gy 8D0A(B BBBI L8=BBB B(A0A8G^ 8D0A(B BBBD L$?+BBB B(A0A8G} 8D0A(B BBBE LtB+BBB B(A0A8G} 8D0A(B BBBE LE;BBB B(A0A8G 8D0A(B BBBE LHBBB B(A0A8Gy 8D0A(B BBBI LdHKBBB B(A0A8Gy 8D0A(B BBBI DNBBB A(A0G 0D(A BBBF <PBBA A(G (D ABBJ <<`SBBA A(G (D ABBJ D|VBBB A(A0G 0D(A BBBF <XBBA A(G (D ABBE <X[BBA A(G (D ABBE LD]gBBB B(A0A8G 8A0A(B BBBC LawBBB B(A0A8G 8A0A(B BBBJ LHdBBB B(A0A8G 8A0A(B BBBK L4goBBB B(A0A8G 8A0A(B BBBJ LjBBB A(A0t (D BBBJ  (C BBBH LkBBB A(A0 (D BBBO  (C BBBH L$XmBBB A(A0t (D BBBJ  (C BBBH LtnBBB A(A0 (D BBBO  (C BBBH `pBBB A(A0 (D BBBL  (C BBBH F (C BBBI `(qBBB A(A0 (D BBBL  (C BBBH F (C BBBI `@sBBB A(A0 (D BBBJ  (C BBBH F (C BBBI `tBBB A(A0 (D BBBJ  (C BBBH F (C BBBI LTxv,BBB E(A0A8G 8A0A(B BBBJ LXzBEB B(A0A8G 8A0A(B BBBJ L~6BBB B(A0A8G 8D0A(B BBBF LDBBB B(A0A8G 8D0A(B BBBD L؅aBBE B(A0A8G 8A0A(B BBBK LBBE B(A0A8G 8A0A(B BBBK L48dBBB B(A0A8G 8D0A(B BBBK LXJBBB B(A0A8G 8D0A(B BBBD |XHBBB B(A0D8G 8A0A(B BBBA . 8A0A(B BBBH  8G0A(B BBBN (T(TDPO O(H0H8H@I(\TDPO O(H0H8H@I(TDPO O(H0H8H@I(ĜTDPO O(H0H8H@I(TDPO O(H0H8H@I(0,TDPO O(H0H8H@I(\`TDPO O(H0H8H@I(TDPO O(H0H8H@I(ȝTDPO O(H0H8H@I(TDPO O(H0H8H@I( 0TDPO O(H0H8H@I(8dTDPO O(H0H8H@I(dTDPO O(H0H8H@IH̞EBBB B(A0A8G`  8A0A(B BBBF HТBBB B(A0A8G` 8A0A(B BBBF H(dBBB B(A0A8GP 8A0A(B BBBF @t}BBB A(A0G@ 0E(A BBBF HrBBB B(A0A8GP 8E0A(B BBBF @BBB A(A0G@ 0A(A BBBF LHdBDB B(A0A8G 8D0A(B BBBA LWBDB B(A0A8G 8D0A(B BBBA LBEB B(A0A8G 8D0A(B BBBA L8 t#BEB B(A0A8G 8D0A(B BBBA L T4BEB B(A0A8G 8D0A(B BBBA 8 DkBMA  ABE s AEG  l;||op  ~H  oo oo o-|allnan(a, axis=None) Test whether all array elements along a given axis are NaN. Returns the same output as np.isnan(a).all(axis) Note that allnan([]) is True to match np.isnan([]).all() and all([]) Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which NaNs are searched. The default (`axis` = ``None``) is to search for NaNs over a flattened input array. Returns ------- y : bool or ndarray A boolean or new `ndarray` is returned. See also -------- bottleneck.anynan: Test if any array element along given axis is NaN Examples -------- >>> bn.allnan(1) False >>> bn.allnan(np.nan) True >>> bn.allnan([1, np.nan]) False >>> a = np.array([[1, np.nan], [1, np.nan]]) >>> bn.allnan(a) False >>> bn.allnan(a, axis=0) array([False, True], dtype=bool) An empty array returns True: >>> bn.allnan([]) True which is similar to: >>> all([]) True >>> np.isnan([]).all() True anynan(a, axis=None) Test whether any array element along a given axis is NaN. Returns the same output as np.isnan(a).any(axis) Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which NaNs are searched. The default (`axis` = ``None``) is to search for NaNs over a flattened input array. Returns ------- y : bool or ndarray A boolean or new `ndarray` is returned. See also -------- bottleneck.allnan: Test if all array elements along given axis are NaN Examples -------- >>> bn.anynan(1) False >>> bn.anynan(np.nan) True >>> bn.anynan([1, np.nan]) True >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.anynan(a) True >>> bn.anynan(a, axis=0) array([False, True], dtype=bool) nanmedian(a, axis=None) Median of array elements along given axis ignoring NaNs. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the median is computed. The default (axis=None) is to compute the median of the flattened array. Returns ------- y : ndarray An array with the same shape as `a`, except that the specified axis has been removed. If `a` is a 0d array, or if axis is None, a scalar is returned. `float64` return values are used for integer inputs. See also -------- bottleneck.median: Median along specified axis. Examples -------- >>> a = np.array([[np.nan, 7, 4], [3, 2, 1]]) >>> a array([[ nan, 7., 4.], [ 3., 2., 1.]]) >>> bn.nanmedian(a) 3.0 >> bn.nanmedian(a, axis=0) array([ 3. , 4.5, 2.5]) >> bn.nanmedian(a, axis=1) array([ 5.5, 2. ]) median(a, axis=None) Median of array elements along given axis. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the median is computed. The default (axis=None) is to compute the median of the flattened array. Returns ------- y : ndarray An array with the same shape as `a`, except that the specified axis has been removed. If `a` is a 0d array, or if axis is None, a scalar is returned. `float64` return values are used for integer inputs. NaN is returned for a slice that contains one or more NaNs. See also -------- bottleneck.nanmedian: Median along specified axis ignoring NaNs. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> bn.median(a) 3.5 >>> bn.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> bn.median(a, axis=1) array([ 7., 2.]) ss(a, axis=None) Sum of the square of each element along the specified axis. Parameters ---------- a : array_like Array whose sum of squares is desired. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the sum of squares is computed. The default (axis=None) is to sum the squares of the flattened array. Returns ------- y : ndarray The sum of a**2 along the given axis. Examples -------- >>> a = np.array([1., 2., 5.]) >>> bn.ss(a) 30.0 And calculating along an axis: >>> b = np.array([[1., 2., 5.], [2., 5., 6.]]) >>> bn.ss(b, axis=1) array([ 30., 65.]) nanargmax(a, axis=None) Indices of the maximum values along an axis, ignoring NaNs. For all-NaN slices ``ValueError`` is raised. Unlike NumPy, the results can be trusted if a slice contains only NaNs and Infs. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which to operate. By default (axis=None) flattened input is used. See also -------- bottleneck.nanargmin: Indices of the minimum values along an axis. bottleneck.nanmax: Maximum values along specified axis, ignoring NaNs. Returns ------- index_array : ndarray An array of indices or a single index value. Examples -------- >>> a = np.array([[np.nan, 4], [2, 3]]) >>> bn.nanargmax(a) 1 >>> a.flat[1] 4.0 >>> bn.nanargmax(a, axis=0) array([1, 0]) >>> bn.nanargmax(a, axis=1) array([1, 1]) nanargmin(a, axis=None) Indices of the minimum values along an axis, ignoring NaNs. For all-NaN slices ``ValueError`` is raised. Unlike NumPy, the results can be trusted if a slice contains only NaNs and Infs. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which to operate. By default (axis=None) flattened input is used. See also -------- bottleneck.nanargmax: Indices of the maximum values along an axis. bottleneck.nanmin: Minimum values along specified axis, ignoring NaNs. Returns ------- index_array : ndarray An array of indices or a single index value. Examples -------- >>> a = np.array([[np.nan, 4], [2, 3]]) >>> bn.nanargmin(a) 2 >>> a.flat[2] 2.0 >>> bn.nanargmin(a, axis=0) array([1, 1]) >>> bn.nanargmin(a, axis=1) array([1, 0]) nanmax(a, axis=None) Maximum values along specified axis, ignoring NaNs. When all-NaN slices are encountered, NaN is returned for that slice. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the maximum is computed. The default (axis=None) is to compute the maximum of the flattened array. Returns ------- y : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a scalar is returned. The same dtype as `a` is returned. See also -------- bottleneck.nanmin: Minimum along specified axis, ignoring NaNs. bottleneck.nanargmax: Indices of maximum values along axis, ignoring NaNs. Examples -------- >>> bn.nanmax(1) 1 >>> bn.nanmax([1]) 1 >>> bn.nanmax([1, np.nan]) 1.0 >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.nanmax(a) 4.0 >>> bn.nanmax(a, axis=0) array([ 1., 4.]) nanmin(a, axis=None) Minimum values along specified axis, ignoring NaNs. When all-NaN slices are encountered, NaN is returned for that slice. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the minimum is computed. The default (axis=None) is to compute the minimum of the flattened array. Returns ------- y : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a scalar is returned. The same dtype as `a` is returned. See also -------- bottleneck.nanmax: Maximum along specified axis, ignoring NaNs. bottleneck.nanargmin: Indices of minimum values along axis, ignoring NaNs. Examples -------- >>> bn.nanmin(1) 1 >>> bn.nanmin([1]) 1 >>> bn.nanmin([1, np.nan]) 1.0 >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.nanmin(a) 1.0 >>> bn.nanmin(a, axis=0) array([ 1., 4.]) nanvar(a, axis=None, ddof=0) Variance along the specified axis, ignoring NaNs. `float64` intermediate and return values are used for integer inputs. Instead of a faster one-pass algorithm, a more stable two-pass algorithm is used. An example of a one-pass algorithm: >>> (a*a).mean() - a.mean()**2 An example of a two-pass algorithm: >>> ((a - a.mean())**2).mean() Note in the two-pass algorithm the mean must be found (first pass) before the squared deviation (second pass) can be found. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the variance is computed. The default (axis=None) is to compute the variance of the flattened array. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of non_NaN elements. By default `ddof` is zero. Returns ------- y : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a scalar is returned. `float64` intermediate and return values are used for integer inputs. If ddof is >= the number of non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is NaN. See also -------- bottleneck.nanstd: Standard deviation along specified axis ignoring NaNs. Notes ----- If positive or negative infinity are present the result is Not A Number (NaN). Examples -------- >>> bn.nanvar(1) 0.0 >>> bn.nanvar([1]) 0.0 >>> bn.nanvar([1, np.nan]) 0.0 >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.nanvar(a) 2.0 >>> bn.nanvar(a, axis=0) array([ 0., 0.]) When positive infinity or negative infinity are present NaN is returned: >>> bn.nanvar([1, np.nan, np.inf]) nan nanstd(a, axis=None, ddof=0) Standard deviation along the specified axis, ignoring NaNs. `float64` intermediate and return values are used for integer inputs. Instead of a faster one-pass algorithm, a more stable two-pass algorithm is used. An example of a one-pass algorithm: >>> np.sqrt((a*a).mean() - a.mean()**2) An example of a two-pass algorithm: >>> np.sqrt(((a - a.mean())**2).mean()) Note in the two-pass algorithm the mean must be found (first pass) before the squared deviation (second pass) can be found. Parameters ---------- a : array_like Input array. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the standard deviation is computed. The default (axis=None) is to compute the standard deviation of the flattened array. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of non-NaN elements. By default `ddof` is zero. Returns ------- y : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a scalar is returned. `float64` intermediate and return values are used for integer inputs. If ddof is >= the number of non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is NaN. See also -------- bottleneck.nanvar: Variance along specified axis ignoring NaNs Notes ----- If positive or negative infinity are present the result is Not A Number (NaN). Examples -------- >>> bn.nanstd(1) 0.0 >>> bn.nanstd([1]) 0.0 >>> bn.nanstd([1, np.nan]) 0.0 >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.nanstd(a) 1.4142135623730951 >>> bn.nanstd(a, axis=0) array([ 0., 0.]) When positive infinity or negative infinity are present NaN is returned: >>> bn.nanstd([1, np.nan, np.inf]) nan nanmean(a, axis=None) Mean of array elements along given axis ignoring NaNs. `float64` intermediate and return values are used for integer inputs. Parameters ---------- a : array_like Array containing numbers whose mean is desired. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the means are computed. The default (axis=None) is to compute the mean of the flattened array. Returns ------- y : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a scalar is returned. `float64` intermediate and return values are used for integer inputs. See also -------- bottleneck.nanmedian: Median along specified axis, ignoring NaNs. Notes ----- No error is raised on overflow. (The sum is computed and then the result is divided by the number of non-NaN elements.) If positive or negative infinity are present the result is positive or negative infinity. But if both positive and negative infinity are present, the result is Not A Number (NaN). Examples -------- >>> bn.nanmean(1) 1.0 >>> bn.nanmean([1]) 1.0 >>> bn.nanmean([1, np.nan]) 1.0 >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.nanmean(a) 2.0 >>> bn.nanmean(a, axis=0) array([ 1., 4.]) When positive infinity and negative infinity are present: >>> bn.nanmean([1, np.nan, np.inf]) inf >>> bn.nanmean([1, np.nan, np.NINF]) -inf >>> bn.nanmean([1, np.nan, np.inf, np.NINF]) nan nansum(a, axis=None) Sum of array elements along given axis treating NaNs as zero. The data type (dtype) of the output is the same as the input. On 64-bit operating systems, 32-bit input is NOT upcast to 64-bit accumulator and return values. Parameters ---------- a : array_like Array containing numbers whose sum is desired. If `a` is not an array, a conversion is attempted. axis : {int, None}, optional Axis along which the sum is computed. The default (axis=None) is to compute the sum of the flattened array. Returns ------- y : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a scalar is returned. Notes ----- No error is raised on overflow. If positive or negative infinity are present the result is positive or negative infinity. But if both positive and negative infinity are present, the result is Not A Number (NaN). Examples -------- >>> bn.nansum(1) 1 >>> bn.nansum([1]) 1 >>> bn.nansum([1, np.nan]) 1.0 >>> a = np.array([[1, 1], [1, np.nan]]) >>> bn.nansum(a) 3.0 >>> bn.nansum(a, axis=0) array([ 2., 1.]) When positive infinity and negative infinity are present: >>> bn.nansum([1, np.nan, np.inf]) inf >>> bn.nansum([1, np.nan, np.NINF]) -inf >>> bn.nansum([1, np.nan, np.inf, np.NINF]) nan Bottleneck functions that reduce the input array along a specified axis.E@ ?E7E 0E )E`"E`EE@E@E`DD  DD` GCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-23)GCC: (conda-forge gcc 12.3.0-5) 12.3.0 0 # G % i 8 NZ| |  #  #P 0%P &P 'P, )DB p.TQ /P` 1s 2 4 P6 8 : p= @ B D pF, PH@ JTS KXf L>s N; `O P R T U: V/ X Z ] `. Pc?? c P c?a cKfr 0e f f h h k `n @q t  0w  @z4 }H \ p     ;   + + @;* = P a t  ` ` @ g w  o  . `B V l    ,  6 0 Pa  Pd+ J> HF `TM TT T^ o @E }  $W 34 W T r p/ .# p) T @T T T `T  T T T T&h1@I< K#V blm`8x@^^`w  j|F  ~. 9 J V r      l;      # 6 I  9kW f q           / J \ q       "  crti.ocall_gmon_startcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.0__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryreduce.cinit_iter_allPyArray_APIanynan_all_int64allnan_all_float32allnan_all_float64anynan_all_float32anynan_all_float64nanmedian_one_float32ss_all_float32ss_all_float64nanmax_all_float32nanmax_all_float64nanmin_all_float32nanmin_all_float64nanvar_all_int32nanvar_all_int64nanvar_all_float32nanvar_all_float64nanmean_all_int32nanmean_all_int64nanmean_all_float32nanmean_all_float64nansum_all_float32nansum_all_float64ss_all_int32ss_all_int64nanmax_all_int32nanmax_all_int64nanmin_all_int32nanmin_all_int64nansum_all_int32nansum_all_int64nanstd_all_int32nanstd_all_int64nanstd_all_float64nanstd_all_float32allnan_all_int64anynan_all_int32allnan_all_int32slowslow_moduleanynan_one_int64anynan_one_int32allnan_one_int64allnan_one_int32nanmin_one_int32nanmax_one_int32nanmax_one_int64nanmin_one_int64nanmin_one_float32nanmax_one_float64nanargmax_one_int32nanargmin_one_int32nanargmin_one_int64nanargmax_one_int64nanmax_one_float32nanmin_one_float64nansum_one_int32ss_one_float64nanargmax_one_float64ss_one_float32ss_one_int32nanargmax_one_float32nanargmin_one_float32nanargmin_one_float64nansum_one_float64nansum_one_float32nansum_one_int64allnan_one_float64allnan_one_float32ss_one_int64anynan_one_float32anynan_one_float64nanmean_one_int64nanmean_one_int32nanmean_one_float32nanmean_one_float64nanargmin_all_int32nanargmin_all_int64nanargmax_all_int32nanargmax_all_int64nanargmin_all_float32nanargmax_all_float32nanargmax_all_float64nanargmin_all_float64nanvar_one_int64nanvar_one_int32nanvar_one_float32nanvar_one_float64nanstd_one_int32nanstd_one_int64nanstd_one_float32nanstd_one_float64reducerallnananynannanmedianmedian_one_int32median_all_int64nanmedian_all_float32nanmedian_all_float64median_one_int64nanmedian_one_float64median_all_int32ssnanargmaxnanargminnanmaxnanminnanvarnanstdnanmeannansumreduce_defreduce_docreduce_methodsnansum_docnanmean_docnanstd_docnanvar_docnanmin_docnanmax_docnanargmin_docnanargmax_docss_docnanmedian_docanynan_docallnan_doc__FRAME_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_pystr_axisfree@GLIBC_2.2.5PyDict_Size_ITM_deregisterTMCloneTablePyEval_RestoreThreadPyObject_GetAttrStringpystr_a_Py_Dealloc_fini__stack_chk_fail@GLIBC_2.4PyExc_RuntimeErrorPyErr_SetStringPyExc_ValueErrorPyExc_TypeErrorPyErr_Printmemset@GLIBC_2.2.5PyFloat_FromDoublePyInit_reducePyDict_GetItempystr_ddof_Py_FalseStruct__gmon_start__PyErr_OccurredPyModule_Create2PyImport_ImportModulemalloc@GLIBC_2.2.5_Py_NoneStructsqrtf_Py_TrueStructPyCallable_CheckPyCapsule_TypePyEval_SaveThreadPyUnicode_InternFromStringPyExc_ImportErrorPyExc_AttributeErrorPyObject_CallsqrtPyType_IsSubtypePyErr_FormatPyCapsule_GetPointer_ITM_registerTMCloneTablePyLong_FromLongLong__cxa_finalize@GLIBC_2.2.5_init.symtab.strtab.shstrtab.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.init.plt.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.dynamic.data.bss.commentoX% pp8-5o ZBo  0QH H [ a  f o0 0 ;ul;l; {@@FFII!|l|l|lj~n`p; 00T8 Ⱦ