"""psCharStrings.py -- module implementing various kinds of CharStrings:
CFF dictionary data and Type1/Type2 CharStrings.
"""

from fontTools.misc.fixedTools import (
    fixedToFloat,
    floatToFixed,
    floatToFixedToStr,
    strToFixedToFloat,
)
from fontTools.misc.textTools import bytechr, byteord, bytesjoin, strjoin
from fontTools.pens.boundsPen import BoundsPen
import struct
import logging


log = logging.getLogger(__name__)


def read_operator(self, b0, data, index):
    if b0 == 12:
        op = (b0, byteord(data[index]))
        index = index + 1
    else:
        op = b0
    try:
        operator = self.operators[op]
    except KeyError:
        return None, index
    value = self.handle_operator(operator)
    return value, index


def read_byte(self, b0, data, index):
    return b0 - 139, index


def read_smallInt1(self, b0, data, index):
    b1 = byteord(data[index])
    return (b0 - 247) * 256 + b1 + 108, index + 1


def read_smallInt2(self, b0, data, index):
    b1 = byteord(data[index])
    return -(b0 - 251) * 256 - b1 - 108, index + 1


def read_shortInt(self, b0, data, index):
    (value,) = struct.unpack(">h", data[index : index + 2])
    return value, index + 2


def read_longInt(self, b0, data, index):
    (value,) = struct.unpack(">l", data[index : index + 4])
    return value, index + 4


def read_fixed1616(self, b0, data, index):
    (value,) = struct.unpack(">l", data[index : index + 4])
    return fixedToFloat(value, precisionBits=16), index + 4


def read_reserved(self, b0, data, index):
    assert NotImplementedError
    return NotImplemented, index


def read_realNumber(self, b0, data, index):
    number = ""
    while True:
        b = byteord(data[index])
        index = index + 1
        nibble0 = (b & 0xF0) >> 4
        nibble1 = b & 0x0F
        if nibble0 == 0xF:
            break
        number = number + realNibbles[nibble0]
        if nibble1 == 0xF:
            break
        number = number + realNibbles[nibble1]
    return float(number), index


t1OperandEncoding = [None] * 256
t1OperandEncoding[0:32] = (32) * [read_operator]
t1OperandEncoding[32:247] = (247 - 32) * [read_byte]
t1OperandEncoding[247:251] = (251 - 247) * [read_smallInt1]
t1OperandEncoding[251:255] = (255 - 251) * [read_smallInt2]
t1OperandEncoding[255] = read_longInt
assert len(t1OperandEncoding) == 256

t2OperandEncoding = t1OperandEncoding[:]
t2OperandEncoding[28] = read_shortInt
t2OperandEncoding[255] = read_fixed1616

cffDictOperandEncoding = t2OperandEncoding[:]
cffDictOperandEncoding[29] = read_longInt
cffDictOperandEncoding[30] = read_realNumber
cffDictOperandEncoding[255] = read_reserved


realNibbles = [
    "0",
    "1",
    "2",
    "3",
    "4",
    "5",
    "6",
    "7",
    "8",
    "9",
    ".",
    "E",
    "E-",
    None,
    "-",
]
realNibblesDict = {v: i for i, v in enumerate(realNibbles)}

maxOpStack = 193


def buildOperatorDict(operatorList):
    oper = {}
    opc = {}
    for item in operatorList:
        if len(item) == 2:
            oper[item[0]] = item[1]
        else:
            oper[item[0]] = item[1:]
        if isinstance(item[0], tuple):
            opc[item[1]] = item[0]
        else:
            opc[item[1]] = (item[0],)
    return oper, opc


t2Operators = [
    # 	opcode		name
    (1, "hstem"),
    (3, "vstem"),
    (4, "vmoveto"),
    (5, "rlineto"),
    (6, "hlineto"),
    (7, "vlineto"),
    (8, "rrcurveto"),
    (10, "callsubr"),
    (11, "return"),
    (14, "endchar"),
    (15, "vsindex"),
    (16, "blend"),
    (18, "hstemhm"),
    (19, "hintmask"),
    (20, "cntrmask"),
    (21, "rmoveto"),
    (22, "hmoveto"),
    (23, "vstemhm"),
    (24, "rcurveline"),
    (25, "rlinecurve"),
    (26, "vvcurveto"),
    (27, "hhcurveto"),
    # 	(28,		'shortint'),  # not really an operator
    (29, "callgsubr"),
    (30, "vhcurveto"),
    (31, "hvcurveto"),
    ((12, 0), "ignore"),  # dotsection. Yes, there a few very early OTF/CFF
    # fonts with this deprecated operator. Just ignore it.
    ((12, 3), "and"),
    ((12, 4), "or"),
    ((12, 5), "not"),
    ((12, 8), "store"),
    ((12, 9), "abs"),
    ((12, 10), "add"),
    ((12, 11), "sub"),
    ((12, 12), "div"),
    ((12, 13), "load"),
    ((12, 14), "neg"),
    ((12, 15), "eq"),
    ((12, 18), "drop"),
    ((12, 20), "put"),
    ((12, 21), "get"),
    ((12, 22), "ifelse"),
    ((12, 23), "random"),
    ((12, 24), "mul"),
    ((12, 26), "sqrt"),
    ((12, 27), "dup"),
    ((12, 28), "exch"),
    ((12, 29), "index"),
    ((12, 30), "roll"),
    ((12, 34), "hflex"),
    ((12, 35), "flex"),
    ((12, 36), "hflex1"),
    ((12, 37), "flex1"),
]


def getIntEncoder(format):
    if format == "cff":
        twoByteOp = bytechr(28)
        fourByteOp = bytechr(29)
    elif format == "t1":
        twoByteOp = None
        fourByteOp = bytechr(255)
    else:
        assert format == "t2"
        twoByteOp = bytechr(28)
        fourByteOp = None

    def encodeInt(
        value,
        fourByteOp=fourByteOp,
        bytechr=bytechr,
        pack=struct.pack,
        unpack=struct.unpack,
        twoByteOp=twoByteOp,
    ):
        if -107 <= value <= 107:
            code = bytechr(value + 139)
        elif 108 <= value <= 1131:
            value = value - 108
            code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF)
        elif -1131 <= value <= -108:
            value = -value - 108
            code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF)
        elif twoByteOp is not None and -32768 <= value <= 32767:
            code = twoByteOp + pack(">h", value)
        elif fourByteOp is None:
            # Backwards compatible hack: due to a previous bug in FontTools,
            # 16.16 fixed numbers were written out as 4-byte ints. When
            # these numbers were small, they were wrongly written back as
            # small ints instead of 4-byte ints, breaking round-tripping.
            # This here workaround doesn't do it any better, since we can't
            # distinguish anymore between small ints that were supposed to
            # be small fixed numbers and small ints that were just small
            # ints. Hence the warning.
            log.warning(
                "4-byte T2 number got passed to the "
                "IntType handler. This should happen only when reading in "
                "old XML files.\n"
            )
            code = bytechr(255) + pack(">l", value)
        else:
            code = fourByteOp + pack(">l", value)
        return code

    return encodeInt


encodeIntCFF = getIntEncoder("cff")
encodeIntT1 = getIntEncoder("t1")
encodeIntT2 = getIntEncoder("t2")


def encodeFixed(f, pack=struct.pack):
    """For T2 only"""
    value = floatToFixed(f, precisionBits=16)
    if value & 0xFFFF == 0:  # check if the fractional part is zero
        return encodeIntT2(value >> 16)  # encode only the integer part
    else:
        return b"\xff" + pack(">l", value)  # encode the entire fixed point value


realZeroBytes = bytechr(30) + bytechr(0xF)


def encodeFloat(f):
    # For CFF only, used in cffLib
    if f == 0.0:  # 0.0 == +0.0 == -0.0
        return realZeroBytes
    # Note: 14 decimal digits seems to be the limitation for CFF real numbers
    # in macOS. However, we use 8 here to match the implementation of AFDKO.
    s = "%.8G" % f
    if s[:2] == "0.":
        s = s[1:]
    elif s[:3] == "-0.":
        s = "-" + s[2:]
    elif s.endswith("000"):
        significantDigits = s.rstrip("0")
        s = "%sE%d" % (significantDigits, len(s) - len(significantDigits))
    else:
        dotIndex = s.find(".")
        eIndex = s.find("E")
        if dotIndex != -1 and eIndex != -1:
            integerPart = s[:dotIndex]
            fractionalPart = s[dotIndex + 1 : eIndex]
            exponent = int(s[eIndex + 1 :])
            newExponent = exponent - len(fractionalPart)
            if newExponent == 1:
                s = "%s%s0" % (integerPart, fractionalPart)
            else:
                s = "%s%sE%d" % (integerPart, fractionalPart, newExponent)
    if s.startswith((".0", "-.0")):
        sign, s = s.split(".", 1)
        s = "%s%sE-%d" % (sign, s.lstrip("0"), len(s))
    nibbles = []
    while s:
        c = s[0]
        s = s[1:]
        if c == "E":
            c2 = s[:1]
            if c2 == "-":
                s = s[1:]
                c = "E-"
            elif c2 == "+":
                s = s[1:]
            if s.startswith("0"):
                s = s[1:]
        nibbles.append(realNibblesDict[c])
    nibbles.append(0xF)
    if len(nibbles) % 2:
        nibbles.append(0xF)
    d = bytechr(30)
    for i in range(0, len(nibbles), 2):
        d = d + bytechr(nibbles[i] << 4 | nibbles[i + 1])
    return d


class CharStringCompileError(Exception):
    pass


class SimpleT2Decompiler(object):
    def __init__(self, localSubrs, globalSubrs, private=None, blender=None):
        self.localSubrs = localSubrs
        self.localBias = calcSubrBias(localSubrs)
        self.globalSubrs = globalSubrs
        self.globalBias = calcSubrBias(globalSubrs)
        self.private = private
        self.blender = blender
        self.reset()

    def reset(self):
        self.callingStack = []
        self.operandStack = []
        self.hintCount = 0
        self.hintMaskBytes = 0
        self.numRegions = 0
        self.vsIndex = 0

    def execute(self, charString):
        self.callingStack.append(charString)
        needsDecompilation = charString.needsDecompilation()
        if needsDecompilation:
            program = []
            pushToProgram = program.append
        else:
            pushToProgram = lambda x: None
        pushToStack = self.operandStack.append
        index = 0
        while True:
            token, isOperator, index = charString.getToken(index)
            if token is None:
                break  # we're done!
            pushToProgram(token)
            if isOperator:
                handlerName = "op_" + token
                handler = getattr(self, handlerName, None)
                if handler is not None:
                    rv = handler(index)
                    if rv:
                        hintMaskBytes, index = rv
                        pushToProgram(hintMaskBytes)
                else:
                    self.popall()
            else:
                pushToStack(token)
        if needsDecompilation:
            charString.setProgram(program)
        del self.callingStack[-1]

    def pop(self):
        value = self.operandStack[-1]
        del self.operandStack[-1]
        return value

    def popall(self):
        stack = self.operandStack[:]
        self.operandStack[:] = []
        return stack

    def push(self, value):
        self.operandStack.append(value)

    def op_return(self, index):
        if self.operandStack:
            pass

    def op_endchar(self, index):
        pass

    def op_ignore(self, index):
        pass

    def op_callsubr(self, index):
        subrIndex = self.pop()
        subr = self.localSubrs[subrIndex + self.localBias]
        self.execute(subr)

    def op_callgsubr(self, index):
        subrIndex = self.pop()
        subr = self.globalSubrs[subrIndex + self.globalBias]
        self.execute(subr)

    def op_hstem(self, index):
        self.countHints()

    def op_vstem(self, index):
        self.countHints()

    def op_hstemhm(self, index):
        self.countHints()

    def op_vstemhm(self, index):
        self.countHints()

    def op_hintmask(self, index):
        if not self.hintMaskBytes:
            self.countHints()
            self.hintMaskBytes = (self.hintCount + 7) // 8
        hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes)
        return hintMaskBytes, index

    op_cntrmask = op_hintmask

    def countHints(self):
        args = self.popall()
        self.hintCount = self.hintCount + len(args) // 2

    # misc
    def op_and(self, index):
        raise NotImplementedError

    def op_or(self, index):
        raise NotImplementedError

    def op_not(self, index):
        raise NotImplementedError

    def op_store(self, index):
        raise NotImplementedError

    def op_abs(self, index):
        raise NotImplementedError

    def op_add(self, index):
        raise NotImplementedError

    def op_sub(self, index):
        raise NotImplementedError

    def op_div(self, index):
        raise NotImplementedError

    def op_load(self, index):
        raise NotImplementedError

    def op_neg(self, index):
        raise NotImplementedError

    def op_eq(self, index):
        raise NotImplementedError

    def op_drop(self, index):
        raise NotImplementedError

    def op_put(self, index):
        raise NotImplementedError

    def op_get(self, index):
        raise NotImplementedError

    def op_ifelse(self, index):
        raise NotImplementedError

    def op_random(self, index):
        raise NotImplementedError

    def op_mul(self, index):
        raise NotImplementedError

    def op_sqrt(self, index):
        raise NotImplementedError

    def op_dup(self, index):
        raise NotImplementedError

    def op_exch(self, index):
        raise NotImplementedError

    def op_index(self, index):
        raise NotImplementedError

    def op_roll(self, index):
        raise NotImplementedError

    def op_blend(self, index):
        if self.numRegions == 0:
            self.numRegions = self.private.getNumRegions()
        numBlends = self.pop()
        numOps = numBlends * (self.numRegions + 1)
        if self.blender is None:
            del self.operandStack[
                -(numOps - numBlends) :
            ]  # Leave the default operands on the stack.
        else:
            argi = len(self.operandStack) - numOps
            end_args = tuplei = argi + numBlends
            while argi < end_args:
                next_ti = tuplei + self.numRegions
                deltas = self.operandStack[tuplei:next_ti]
                delta = self.blender(self.vsIndex, deltas)
                self.operandStack[argi] += delta
                tuplei = next_ti
                argi += 1
            self.operandStack[end_args:] = []

    def op_vsindex(self, index):
        vi = self.pop()
        self.vsIndex = vi
        self.numRegions = self.private.getNumRegions(vi)


t1Operators = [
    # 	opcode		name
    (1, "hstem"),
    (3, "vstem"),
    (4, "vmoveto"),
    (5, "rlineto"),
    (6, "hlineto"),
    (7, "vlineto"),
    (8, "rrcurveto"),
    (9, "closepath"),
    (10, "callsubr"),
    (11, "return"),
    (13, "hsbw"),
    (14, "endchar"),
    (21, "rmoveto"),
    (22, "hmoveto"),
    (30, "vhcurveto"),
    (31, "hvcurveto"),
    ((12, 0), "dotsection"),
    ((12, 1), "vstem3"),
    ((12, 2), "hstem3"),
    ((12, 6), "seac"),
    ((12, 7), "sbw"),
    ((12, 12), "div"),
    ((12, 16), "callothersubr"),
    ((12, 17), "pop"),
    ((12, 33), "setcurrentpoint"),
]


class T2WidthExtractor(SimpleT2Decompiler):
    def __init__(
        self,
        localSubrs,
        globalSubrs,
        nominalWidthX,
        defaultWidthX,
        private=None,
        blender=None,
    ):
        SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs, private, blender)
        self.nominalWidthX = nominalWidthX
        self.defaultWidthX = defaultWidthX

    def reset(self):
        SimpleT2Decompiler.reset(self)
        self.gotWidth = 0
        self.width = 0

    def popallWidth(self, evenOdd=0):
        args = self.popall()
        if not self.gotWidth:
            if evenOdd ^ (len(args) % 2):
                # For CFF2 charstrings, this should never happen
                assert (
                    self.defaultWidthX is not None
                ), "CFF2 CharStrings must not have an initial width value"
                self.width = self.nominalWidthX + args[0]
                args = args[1:]
            else:
                self.width = self.defaultWidthX
            self.gotWidth = 1
        return args

    def countHints(self):
        args = self.popallWidth()
        self.hintCount = self.hintCount + len(args) // 2

    def op_rmoveto(self, index):
        self.popallWidth()

    def op_hmoveto(self, index):
        self.popallWidth(1)

    def op_vmoveto(self, index):
        self.popallWidth(1)

    def op_endchar(self, index):
        self.popallWidth()


class T2OutlineExtractor(T2WidthExtractor):
    def __init__(
        self,
        pen,
        localSubrs,
        globalSubrs,
        nominalWidthX,
        defaultWidthX,
        private=None,
        blender=None,
    ):
        T2WidthExtractor.__init__(
            self,
            localSubrs,
            globalSubrs,
            nominalWidthX,
            defaultWidthX,
            private,
            blender,
        )
        self.pen = pen
        self.subrLevel = 0

    def reset(self):
        T2WidthExtractor.reset(self)
        self.currentPoint = (0, 0)
        self.sawMoveTo = 0
        self.subrLevel = 0

    def execute(self, charString):
        self.subrLevel += 1
        super().execute(charString)
        self.subrLevel -= 1
        if self.subrLevel == 0:
            self.endPath()

    def _nextPoint(self, point):
        x, y = self.currentPoint
        point = x + point[0], y + point[1]
        self.currentPoint = point
        return point

    def rMoveTo(self, point):
        self.pen.moveTo(self._nextPoint(point))
        self.sawMoveTo = 1

    def rLineTo(self, point):
        if not self.sawMoveTo:
            self.rMoveTo((0, 0))
        self.pen.lineTo(self._nextPoint(point))

    def rCurveTo(self, pt1, pt2, pt3):
        if not self.sawMoveTo:
            self.rMoveTo((0, 0))
        nextPoint = self._nextPoint
        self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3))

    def closePath(self):
        if self.sawMoveTo:
            self.pen.closePath()
        self.sawMoveTo = 0

    def endPath(self):
        # In T2 there are no open paths, so always do a closePath when
        # finishing a sub path. We avoid spurious calls to closePath()
        # because its a real T1 op we're emulating in T2 whereas
        # endPath() is just a means to that emulation
        if self.sawMoveTo:
            self.closePath()

    #
    # hint operators
    #
    # def op_hstem(self, index):
    # 	self.countHints()
    # def op_vstem(self, index):
    # 	self.countHints()
    # def op_hstemhm(self, index):
    # 	self.countHints()
    # def op_vstemhm(self, index):
    # 	self.countHints()
    # def op_hintmask(self, index):
    # 	self.countHints()
    # def op_cntrmask(self, index):
    # 	self.countHints()

    #
    # path constructors, moveto
    #
    def op_rmoveto(self, index):
        self.endPath()
        self.rMoveTo(self.popallWidth())

    def op_hmoveto(self, index):
        self.endPath()
        self.rMoveTo((self.popallWidth(1)[0], 0))

    def op_vmoveto(self, index):
        self.endPath()
        self.rMoveTo((0, self.popallWidth(1)[0]))

    def op_endchar(self, index):
        self.endPath()
        args = self.popallWidth()
        if args:
            from fontTools.encodings.StandardEncoding import StandardEncoding

            # endchar can do seac accent bulding; The T2 spec says it's deprecated,
            # but recent software that shall remain nameless does output it.
            adx, ady, bchar, achar = args
            baseGlyph = StandardEncoding[bchar]
            self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
            accentGlyph = StandardEncoding[achar]
            self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))

    #
    # path constructors, lines
    #
    def op_rlineto(self, index):
        args = self.popall()
        for i in range(0, len(args), 2):
            point = args[i : i + 2]
            self.rLineTo(point)

    def op_hlineto(self, index):
        self.alternatingLineto(1)

    def op_vlineto(self, index):
        self.alternatingLineto(0)

    #
    # path constructors, curves
    #
    def op_rrcurveto(self, index):
        """{dxa dya dxb dyb dxc dyc}+ rrcurveto"""
        args = self.popall()
        for i in range(0, len(args), 6):
            (
                dxa,
                dya,
                dxb,
                dyb,
                dxc,
                dyc,
            ) = args[i : i + 6]
            self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc))

    def op_rcurveline(self, index):
        """{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline"""
        args = self.popall()
        for i in range(0, len(args) - 2, 6):
            dxb, dyb, dxc, dyc, dxd, dyd = args[i : i + 6]
            self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
        self.rLineTo(args[-2:])

    def op_rlinecurve(self, index):
        """{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve"""
        args = self.popall()
        lineArgs = args[:-6]
        for i in range(0, len(lineArgs), 2):
            self.rLineTo(lineArgs[i : i + 2])
        dxb, dyb, dxc, dyc, dxd, dyd = args[-6:]
        self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))

    def op_vvcurveto(self, index):
        "dx1? {dya dxb dyb dyc}+ vvcurveto"
        args = self.popall()
        if len(args) % 2:
            dx1 = args[0]
            args = args[1:]
        else:
            dx1 = 0
        for i in range(0, len(args), 4):
            dya, dxb, dyb, dyc = args[i : i + 4]
            self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc))
            dx1 = 0

    def op_hhcurveto(self, index):
        """dy1? {dxa dxb dyb dxc}+ hhcurveto"""
        args = self.popall()
        if len(args) % 2:
            dy1 = args[0]
            args = args[1:]
        else:
            dy1 = 0
        for i in range(0, len(args), 4):
            dxa, dxb, dyb, dxc = args[i : i + 4]
            self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0))
            dy1 = 0

    def op_vhcurveto(self, index):
        """dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30)
        {dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto
        """
        args = self.popall()
        while args:
            args = self.vcurveto(args)
            if args:
                args = self.hcurveto(args)

    def op_hvcurveto(self, index):
        """dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
        {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
        """
        args = self.popall()
        while args:
            args = self.hcurveto(args)
            if args:
                args = self.vcurveto(args)

    #
    # path constructors, flex
    #
    def op_hflex(self, index):
        dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall()
        dy1 = dy3 = dy4 = dy6 = 0
        dy5 = -dy2
        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    def op_flex(self, index):
        dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall()
        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    def op_hflex1(self, index):
        dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall()
        dy3 = dy4 = 0
        dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5)

        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    def op_flex1(self, index):
        dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall()
        dx = dx1 + dx2 + dx3 + dx4 + dx5
        dy = dy1 + dy2 + dy3 + dy4 + dy5
        if abs(dx) > abs(dy):
            dx6 = d6
            dy6 = -dy
        else:
            dx6 = -dx
            dy6 = d6
        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    # misc
    def op_and(self, index):
        raise NotImplementedError

    def op_or(self, index):
        raise NotImplementedError

    def op_not(self, index):
        raise NotImplementedError

    def op_store(self, index):
        raise NotImplementedError

    def op_abs(self, index):
        raise NotImplementedError

    def op_add(self, index):
        raise NotImplementedError

    def op_sub(self, index):
        raise NotImplementedError

    def op_div(self, index):
        num2 = self.pop()
        num1 = self.pop()
        d1 = num1 // num2
        d2 = num1 / num2
        if d1 == d2:
            self.push(d1)
        else:
            self.push(d2)

    def op_load(self, index):
        raise NotImplementedError

    def op_neg(self, index):
        raise NotImplementedError

    def op_eq(self, index):
        raise NotImplementedError

    def op_drop(self, index):
        raise NotImplementedError

    def op_put(self, index):
        raise NotImplementedError

    def op_get(self, index):
        raise NotImplementedError

    def op_ifelse(self, index):
        raise NotImplementedError

    def op_random(self, index):
        raise NotImplementedError

    def op_mul(self, index):
        raise NotImplementedError

    def op_sqrt(self, index):
        raise NotImplementedError

    def op_dup(self, index):
        raise NotImplementedError

    def op_exch(self, index):
        raise NotImplementedError

    def op_index(self, index):
        raise NotImplementedError

    def op_roll(self, index):
        raise NotImplementedError

    #
    # miscellaneous helpers
    #
    def alternatingLineto(self, isHorizontal):
        args = self.popall()
        for arg in args:
            if isHorizontal:
                point = (arg, 0)
            else:
                point = (0, arg)
            self.rLineTo(point)
            isHorizontal = not isHorizontal

    def vcurveto(self, args):
        dya, dxb, dyb, dxc = args[:4]
        args = args[4:]
        if len(args) == 1:
            dyc = args[0]
            args = []
        else:
            dyc = 0
        self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc))
        return args

    def hcurveto(self, args):
        dxa, dxb, dyb, dyc = args[:4]
        args = args[4:]
        if len(args) == 1:
            dxc = args[0]
            args = []
        else:
            dxc = 0
        self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc))
        return args


class T1OutlineExtractor(T2OutlineExtractor):
    def __init__(self, pen, subrs):
        self.pen = pen
        self.subrs = subrs
        self.reset()

    def reset(self):
        self.flexing = 0
        self.width = 0
        self.sbx = 0
        T2OutlineExtractor.reset(self)

    def endPath(self):
        if self.sawMoveTo:
            self.pen.endPath()
        self.sawMoveTo = 0

    def popallWidth(self, evenOdd=0):
        return self.popall()

    def exch(self):
        stack = self.operandStack
        stack[-1], stack[-2] = stack[-2], stack[-1]

    #
    # path constructors
    #
    def op_rmoveto(self, index):
        if self.flexing:
            return
        self.endPath()
        self.rMoveTo(self.popall())

    def op_hmoveto(self, index):
        if self.flexing:
            # We must add a parameter to the stack if we are flexing
            self.push(0)
            return
        self.endPath()
        self.rMoveTo((self.popall()[0], 0))

    def op_vmoveto(self, index):
        if self.flexing:
            # We must add a parameter to the stack if we are flexing
            self.push(0)
            self.exch()
            return
        self.endPath()
        self.rMoveTo((0, self.popall()[0]))

    def op_closepath(self, index):
        self.closePath()

    def op_setcurrentpoint(self, index):
        args = self.popall()
        x, y = args
        self.currentPoint = x, y

    def op_endchar(self, index):
        self.endPath()

    def op_hsbw(self, index):
        sbx, wx = self.popall()
        self.width = wx
        self.sbx = sbx
        self.currentPoint = sbx, self.currentPoint[1]

    def op_sbw(self, index):
        self.popall()  # XXX

    #
    def op_callsubr(self, index):
        subrIndex = self.pop()
        subr = self.subrs[subrIndex]
        self.execute(subr)

    def op_callothersubr(self, index):
        subrIndex = self.pop()
        nArgs = self.pop()
        # print nArgs, subrIndex, "callothersubr"
        if subrIndex == 0 and nArgs == 3:
            self.doFlex()
            self.flexing = 0
        elif subrIndex == 1 and nArgs == 0:
            self.flexing = 1
        # ignore...

    def op_pop(self, index):
        pass  # ignore...

    def doFlex(self):
        finaly = self.pop()
        finalx = self.pop()
        self.pop()  # flex height is unused

        p3y = self.pop()
        p3x = self.pop()
        bcp4y = self.pop()
        bcp4x = self.pop()
        bcp3y = self.pop()
        bcp3x = self.pop()
        p2y = self.pop()
        p2x = self.pop()
        bcp2y = self.pop()
        bcp2x = self.pop()
        bcp1y = self.pop()
        bcp1x = self.pop()
        rpy = self.pop()
        rpx = self.pop()

        # call rrcurveto
        self.push(bcp1x + rpx)
        self.push(bcp1y + rpy)
        self.push(bcp2x)
        self.push(bcp2y)
        self.push(p2x)
        self.push(p2y)
        self.op_rrcurveto(None)

        # call rrcurveto
        self.push(bcp3x)
        self.push(bcp3y)
        self.push(bcp4x)
        self.push(bcp4y)
        self.push(p3x)
        self.push(p3y)
        self.op_rrcurveto(None)

        # Push back final coords so subr 0 can find them
        self.push(finalx)
        self.push(finaly)

    def op_dotsection(self, index):
        self.popall()  # XXX

    def op_hstem3(self, index):
        self.popall()  # XXX

    def op_seac(self, index):
        "asb adx ady bchar achar seac"
        from fontTools.encodings.StandardEncoding import StandardEncoding

        asb, adx, ady, bchar, achar = self.popall()
        baseGlyph = StandardEncoding[bchar]
        self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
        accentGlyph = StandardEncoding[achar]
        adx = adx + self.sbx - asb  # seac weirdness
        self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))

    def op_vstem3(self, index):
        self.popall()  # XXX


class T2CharString(object):
    operandEncoding = t2OperandEncoding
    operators, opcodes = buildOperatorDict(t2Operators)
    decompilerClass = SimpleT2Decompiler
    outlineExtractor = T2OutlineExtractor

    def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None):
        if program is None:
            program = []
        self.bytecode = bytecode
        self.program = program
        self.private = private
        self.globalSubrs = globalSubrs if globalSubrs is not None else []
        self._cur_vsindex = None

    def getNumRegions(self, vsindex=None):
        pd = self.private
        assert pd is not None
        if vsindex is not None:
            self._cur_vsindex = vsindex
        elif self._cur_vsindex is None:
            self._cur_vsindex = pd.vsindex if hasattr(pd, "vsindex") else 0
        return pd.getNumRegions(self._cur_vsindex)

    def __repr__(self):
        if self.bytecode is None:
            return "<%s (source) at %x>" % (self.__class__.__name__, id(self))
        else:
            return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self))

    def getIntEncoder(self):
        return encodeIntT2

    def getFixedEncoder(self):
        return encodeFixed

    def decompile(self):
        if not self.needsDecompilation():
            return
        subrs = getattr(self.private, "Subrs", [])
        decompiler = self.decompilerClass(subrs, self.globalSubrs, self.private)
        decompiler.execute(self)

    def draw(self, pen, blender=None):
        subrs = getattr(self.private, "Subrs", [])
        extractor = self.outlineExtractor(
            pen,
            subrs,
            self.globalSubrs,
            self.private.nominalWidthX,
            self.private.defaultWidthX,
            self.private,
            blender,
        )
        extractor.execute(self)
        self.width = extractor.width

    def calcBounds(self, glyphSet):
        boundsPen = BoundsPen(glyphSet)
        self.draw(boundsPen)
        return boundsPen.bounds

    def compile(self, isCFF2=False):
        if self.bytecode is not None:
            return
        opcodes = self.opcodes
        program = self.program

        if isCFF2:
            # If present, remove return and endchar operators.
            if program and program[-1] in ("return", "endchar"):
                program = program[:-1]
        elif program and not isinstance(program[-1], str):
            raise CharStringCompileError(
                "T2CharString or Subr has items on the stack after last operator."
            )

        bytecode = []
        encodeInt = self.getIntEncoder()
        encodeFixed = self.getFixedEncoder()
        i = 0
        end = len(program)
        while i < end:
            token = program[i]
            i = i + 1
            if isinstance(token, str):
                try:
                    bytecode.extend(bytechr(b) for b in opcodes[token])
                except KeyError:
                    raise CharStringCompileError("illegal operator: %s" % token)
                if token in ("hintmask", "cntrmask"):
                    bytecode.append(program[i])  # hint mask
                    i = i + 1
            elif isinstance(token, int):
                bytecode.append(encodeInt(token))
            elif isinstance(token, float):
                bytecode.append(encodeFixed(token))
            else:
                assert 0, "unsupported type: %s" % type(token)
        try:
            bytecode = bytesjoin(bytecode)
        except TypeError:
            log.error(bytecode)
            raise
        self.setBytecode(bytecode)

    def needsDecompilation(self):
        return self.bytecode is not None

    def setProgram(self, program):
        self.program = program
        self.bytecode = None

    def setBytecode(self, bytecode):
        self.bytecode = bytecode
        self.program = None

    def getToken(self, index, len=len, byteord=byteord, isinstance=isinstance):
        if self.bytecode is not None:
            if index >= len(self.bytecode):
                return None, 0, 0
            b0 = byteord(self.bytecode[index])
            index = index + 1
            handler = self.operandEncoding[b0]
            token, index = handler(self, b0, self.bytecode, index)
        else:
            if index >= len(self.program):
                return None, 0, 0
            token = self.program[index]
            index = index + 1
        isOperator = isinstance(token, str)
        return token, isOperator, index

    def getBytes(self, index, nBytes):
        if self.bytecode is not None:
            newIndex = index + nBytes
            bytes = self.bytecode[index:newIndex]
            index = newIndex
        else:
            bytes = self.program[index]
            index = index + 1
        assert len(bytes) == nBytes
        return bytes, index

    def handle_operator(self, operator):
        return operator

    def toXML(self, xmlWriter, ttFont=None):
        from fontTools.misc.textTools import num2binary

        if self.bytecode is not None:
            xmlWriter.dumphex(self.bytecode)
        else:
            index = 0
            args = []
            while True:
                token, isOperator, index = self.getToken(index)
                if token is None:
                    break
                if isOperator:
                    if token in ("hintmask", "cntrmask"):
                        hintMask, isOperator, index = self.getToken(index)
                        bits = []
                        for byte in hintMask:
                            bits.append(num2binary(byteord(byte), 8))
                        hintMask = strjoin(bits)
                        line = " ".join(args + [token, hintMask])
                    else:
                        line = " ".join(args + [token])
                    xmlWriter.write(line)
                    xmlWriter.newline()
                    args = []
                else:
                    if isinstance(token, float):
                        token = floatToFixedToStr(token, precisionBits=16)
                    else:
                        token = str(token)
                    args.append(token)
            if args:
                # NOTE: only CFF2 charstrings/subrs can have numeric arguments on
                # the stack after the last operator. Compiling this would fail if
                # this is part of CFF 1.0 table.
                line = " ".join(args)
                xmlWriter.write(line)

    def fromXML(self, name, attrs, content):
        from fontTools.misc.textTools import binary2num, readHex

        if attrs.get("raw"):
            self.setBytecode(readHex(content))
            return
        content = strjoin(content)
        content = content.split()
        program = []
        end = len(content)
        i = 0
        while i < end:
            token = content[i]
            i = i + 1
            try:
                token = int(token)
            except ValueError:
                try:
                    token = strToFixedToFloat(token, precisionBits=16)
                except ValueError:
                    program.append(token)
                    if token in ("hintmask", "cntrmask"):
                        mask = content[i]
                        maskBytes = b""
                        for j in range(0, len(mask), 8):
                            maskBytes = maskBytes + bytechr(binary2num(mask[j : j + 8]))
                        program.append(maskBytes)
                        i = i + 1
                else:
                    program.append(token)
            else:
                program.append(token)
        self.setProgram(program)


class T1CharString(T2CharString):
    operandEncoding = t1OperandEncoding
    operators, opcodes = buildOperatorDict(t1Operators)

    def __init__(self, bytecode=None, program=None, subrs=None):
        super().__init__(bytecode, program)
        self.subrs = subrs

    def getIntEncoder(self):
        return encodeIntT1

    def getFixedEncoder(self):
        def encodeFixed(value):
            raise TypeError("Type 1 charstrings don't support floating point operands")

    def decompile(self):
        if self.bytecode is None:
            return
        program = []
        index = 0
        while True:
            token, isOperator, index = self.getToken(index)
            if token is None:
                break
            program.append(token)
        self.setProgram(program)

    def draw(self, pen):
        extractor = T1OutlineExtractor(pen, self.subrs)
        extractor.execute(self)
        self.width = extractor.width


class DictDecompiler(object):
    operandEncoding = cffDictOperandEncoding

    def __init__(self, strings, parent=None):
        self.stack = []
        self.strings = strings
        self.dict = {}
        self.parent = parent

    def getDict(self):
        assert len(self.stack) == 0, "non-empty stack"
        return self.dict

    def decompile(self, data):
        index = 0
        lenData = len(data)
        push = self.stack.append
        while index < lenData:
            b0 = byteord(data[index])
            index = index + 1
            handler = self.operandEncoding[b0]
            value, index = handler(self, b0, data, index)
            if value is not None:
                push(value)

    def pop(self):
        value = self.stack[-1]
        del self.stack[-1]
        return value

    def popall(self):
        args = self.stack[:]
        del self.stack[:]
        return args

    def handle_operator(self, operator):
        operator, argType = operator
        if isinstance(argType, tuple):
            value = ()
            for i in range(len(argType) - 1, -1, -1):
                arg = argType[i]
                arghandler = getattr(self, "arg_" + arg)
                value = (arghandler(operator),) + value
        else:
            arghandler = getattr(self, "arg_" + argType)
            value = arghandler(operator)
        if operator == "blend":
            self.stack.extend(value)
        else:
            self.dict[operator] = value

    def arg_number(self, name):
        if isinstance(self.stack[0], list):
            out = self.arg_blend_number(self.stack)
        else:
            out = self.pop()
        return out

    def arg_blend_number(self, name):
        out = []
        blendArgs = self.pop()
        numMasters = len(blendArgs)
        out.append(blendArgs)
        out.append("blend")
        dummy = self.popall()
        return blendArgs

    def arg_SID(self, name):
        return self.strings[self.pop()]

    def arg_array(self, name):
        return self.popall()

    def arg_blendList(self, name):
        """
        There may be non-blend args at the top of the stack. We first calculate
        where the blend args start in the stack. These are the last
        numMasters*numBlends) +1 args.
        The blend args starts with numMasters relative coordinate values, the  BlueValues in the list from the default master font. This is followed by
        numBlends list of values. Each of  value in one of these lists is the
        Variable Font delta for the matching region.

        We re-arrange this to be a list of numMaster entries. Each entry starts with the corresponding default font relative value, and is followed by
        the delta values. We then convert the default values, the first item in each entry, to an absolute value.
        """
        vsindex = self.dict.get("vsindex", 0)
        numMasters = (
            self.parent.getNumRegions(vsindex) + 1
        )  # only a PrivateDict has blended ops.
        numBlends = self.pop()
        args = self.popall()
        numArgs = len(args)
        # The spec says that there should be no non-blended Blue Values,.
        assert numArgs == numMasters * numBlends
        value = [None] * numBlends
        numDeltas = numMasters - 1
        i = 0
        prevVal = 0
        while i < numBlends:
            newVal = args[i] + prevVal
            prevVal = newVal
            masterOffset = numBlends + (i * numDeltas)
            blendList = [newVal] + args[masterOffset : masterOffset + numDeltas]
            value[i] = blendList
            i += 1
        return value

    def arg_delta(self, name):
        valueList = self.popall()
        out = []
        if valueList and isinstance(valueList[0], list):
            # arg_blendList() has already converted these to absolute values.
            out = valueList
        else:
            current = 0
            for v in valueList:
                current = current + v
                out.append(current)
        return out


def calcSubrBias(subrs):
    nSubrs = len(subrs)
    if nSubrs < 1240:
        bias = 107
    elif nSubrs < 33900:
        bias = 1131
    else:
        bias = 32768
    return bias