// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2020 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: jodebo_beck@gmx.de (Johannes Beck) // #ifndef CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ #define CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ #include "householder_vector.h" namespace ceres { template bool LineParameterization::Plus( const double* x_ptr, const double* delta_ptr, double* x_plus_delta_ptr) const { // We seek a box plus operator of the form // // [o*, d*] = Plus([o, d], [delta_o, delta_d]) // // where o is the origin point, d is the direction vector, delta_o is // the delta of the origin point and delta_d the delta of the direction and // o* and d* is the updated origin point and direction. // // We separate the Plus operator into the origin point and directional part // d* = Plus_d(d, delta_d) // o* = Plus_o(o, d, delta_o) // // The direction update function Plus_d is the same as for the homogeneous // vector parameterization: // // d* = H_{v(d)} [0.5 sinc(0.5 |delta_d|) delta_d, cos(0.5 |delta_d|)]^T // // where H is the householder matrix // H_{v} = I - (2 / |v|^2) v v^T // and // v(d) = d - sign(d_n) |d| e_n. // // The origin point update function Plus_o is defined as // // o* = o + H_{v(d)} [0.5 delta_o, 0]^T. static constexpr int kDim = AmbientSpaceDimension; using AmbientVector = Eigen::Matrix; using AmbientVectorRef = Eigen::Map>; using ConstAmbientVectorRef = Eigen::Map>; using ConstTangentVectorRef = Eigen::Map>; ConstAmbientVectorRef o(x_ptr); ConstAmbientVectorRef d(x_ptr + kDim); ConstTangentVectorRef delta_o(delta_ptr); ConstTangentVectorRef delta_d(delta_ptr + kDim - 1); AmbientVectorRef o_plus_delta(x_plus_delta_ptr); AmbientVectorRef d_plus_delta(x_plus_delta_ptr + kDim); const double norm_delta_d = delta_d.norm(); o_plus_delta = o; // Shortcut for zero delta direction. if (norm_delta_d == 0.0) { d_plus_delta = d; if (delta_o.isZero(0.0)) { return true; } } // Calculate the householder transformation which is needed for f_d and f_o. AmbientVector v; double beta; // NOTE: The explicit template arguments are needed here because // ComputeHouseholderVector is templated and some versions of MSVC // have trouble deducing the type of v automatically. internal::ComputeHouseholderVector( d, &v, &beta); if (norm_delta_d != 0.0) { // Map the delta from the minimum representation to the over parameterized // homogeneous vector. See section A6.9.2 on page 624 of Hartley & Zisserman // (2nd Edition) for a detailed description. Note there is a typo on Page // 625, line 4 so check the book errata. const double norm_delta_div_2 = 0.5 * norm_delta_d; const double sin_delta_by_delta = std::sin(norm_delta_div_2) / norm_delta_div_2; // Apply the delta update to remain on the unit sphere. See section A6.9.3 // on page 625 of Hartley & Zisserman (2nd Edition) for a detailed // description. AmbientVector y; y.template head() = 0.5 * sin_delta_by_delta * delta_d; y[kDim - 1] = std::cos(norm_delta_div_2); d_plus_delta = d.norm() * (y - v * (beta * (v.transpose() * y))); } // The null space is in the direction of the line, so the tangent space is // perpendicular to the line direction. This is achieved by using the // householder matrix of the direction and allow only movements // perpendicular to e_n. // // The factor of 0.5 is used to be consistent with the line direction // update. AmbientVector y; y << 0.5 * delta_o, 0; o_plus_delta += y - v * (beta * (v.transpose() * y)); return true; } template bool LineParameterization::ComputeJacobian( const double* x_ptr, double* jacobian_ptr) const { static constexpr int kDim = AmbientSpaceDimension; using AmbientVector = Eigen::Matrix; using ConstAmbientVectorRef = Eigen::Map>; using MatrixRef = Eigen::Map< Eigen::Matrix>; ConstAmbientVectorRef d(x_ptr + kDim); MatrixRef jacobian(jacobian_ptr); // Clear the Jacobian as only half of the matrix is not zero. jacobian.setZero(); AmbientVector v; double beta; // NOTE: The explicit template arguments are needed here because // ComputeHouseholderVector is templated and some versions of MSVC // have trouble deducing the type of v automatically. internal::ComputeHouseholderVector( d, &v, &beta); // The Jacobian is equal to J = 0.5 * H.leftCols(kDim - 1) where H is // the Householder matrix (H = I - beta * v * v') for the origin point. For // the line direction part the Jacobian is scaled by the norm of the // direction. for (int i = 0; i < kDim - 1; ++i) { jacobian.block(0, i, kDim, 1) = -0.5 * beta * v(i) * v; jacobian.col(i)(i) += 0.5; } jacobian.template block(kDim, kDim - 1) = jacobian.template block(0, 0) * d.norm(); return true; } } // namespace ceres #endif // CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_