// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // Author(s) : Laurent Saboret and Nader Salman and Pierre Alliez #ifndef CGAL_REMOVE_OUTLIERS_H #define CGAL_REMOVE_OUTLIERS_H #include #include #include #include #include #include #include namespace CGAL { // ---------------------------------------------------------------------------- // Private section // ---------------------------------------------------------------------------- /// \cond SKIP_IN_MANUAL namespace internal { /// Utility function for remove_outliers(): /// Computes average squared distance to the K nearest neighbors. /// /// \pre `k >= 2` /// /// @tparam Kernel Geometric traits class. /// @tparam Tree KD-tree. /// /// @return computed distance. template < typename Kernel, typename Tree > typename Kernel::FT compute_avg_knn_sq_distance_3( const typename Kernel::Point_3& query, ///< 3D point to project Tree& tree, ///< KD-tree unsigned int k) ///< number of neighbors { // geometric types typedef typename Kernel::FT FT; typedef typename Kernel::Point_3 Point; // types for K nearest neighbors search typedef typename CGAL::Search_traits_3 Tree_traits; typedef typename CGAL::Orthogonal_k_neighbor_search Neighbor_search; typedef typename Neighbor_search::iterator Search_iterator; // Gather set of (k+1) neighboring points. // Perform k+1 queries (if in point set, the query point is // output first). Search may be aborted if k is greater // than number of input points. std::vector points; points.reserve(k+1); Neighbor_search search(tree,query,k+1); Search_iterator search_iterator = search.begin(); unsigned int i; for(i=0;i<(k+1);i++) { if(search_iterator == search.end()) break; // premature ending points.push_back(search_iterator->first); search_iterator++; } CGAL_point_set_processing_precondition(points.size() >= 1); // compute average squared distance typename Kernel::Compute_squared_distance_3 sqd; FT sq_distance = (FT)0.0; for(typename std::vector::iterator neighbor = points.begin(); neighbor != points.end(); neighbor++) sq_distance += sqd(*neighbor, query); sq_distance /= FT(points.size()); return sq_distance; } } /* namespace internal */ /// \endcond // ---------------------------------------------------------------------------- // Public section // ---------------------------------------------------------------------------- /// \ingroup PkgPointSetProcessing /// Removes outliers: /// - computes average squared distance to the K nearest neighbors, /// - and sorts the points in increasing order of average distance. /// /// This method modifies the order of input points so as to pack all remaining points first, /// and returns an iterator over the first point to remove (see erase-remove idiom). /// For this reason it should not be called on sorted containers. /// /// \pre `k >= 2` /// /// @tparam InputIterator iterator over input points. /// @tparam PointPMap is a model of `ReadablePropertyMap` with value type `Point_3`. /// It can be omitted ifthe value type of `InputIterator` is convertible to `Point_3`. /// @tparam Kernel Geometric traits class. /// It can be omitted and deduced automatically from the value type of `PointPMap`. /// /// @return iterator over the first point to remove. // This variant requires all parameters. template InputIterator remove_outliers( InputIterator first, ///< iterator over the first input point. InputIterator beyond, ///< past-the-end iterator over the input points. PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3 unsigned int k, ///< number of neighbors. double threshold_percent, ///< percentage of points to remove. const Kernel& /*kernel*/) ///< geometric traits. { // geometric types typedef typename Kernel::FT FT; // basic geometric types typedef typename Kernel::Point_3 Point; // actual type of input points typedef typename std::iterator_traits::value_type Enriched_point; // types for K nearest neighbors search structure typedef typename CGAL::Search_traits_3 Tree_traits; typedef typename CGAL::Orthogonal_k_neighbor_search Neighbor_search; typedef typename Neighbor_search::Tree Tree; // precondition: at least one element in the container. // to fix: should have at least three distinct points // but this is costly to check CGAL_point_set_processing_precondition(first != beyond); // precondition: at least 2 nearest neighbors CGAL_point_set_processing_precondition(k >= 2); CGAL_point_set_processing_precondition(threshold_percent >= 0 && threshold_percent <= 100); InputIterator it; // Instanciate a KD-tree search. // Note: We have to convert each input iterator to Point_3. std::vector kd_tree_points; for(it = first; it != beyond; it++) kd_tree_points.push_back( get(point_pmap, *it) ); Tree tree(kd_tree_points.begin(), kd_tree_points.end()); // iterate over input points and add them to multimap sorted by distance to k std::multimap sorted_points; for(it = first; it != beyond; it++) { FT sq_distance = internal::compute_avg_knn_sq_distance_3( get(point_pmap,*it), tree, k); sorted_points.insert( std::make_pair(sq_distance, *it) ); } // Replaces [first, beyond) range by the multimap content. // Returns the iterator after the (100-threshold_percent) % best points. InputIterator first_point_to_remove = beyond; InputIterator dst = first; int first_index_to_remove = int(double(sorted_points.size()) * ((100.0-threshold_percent)/100.0)); typename std::multimap::iterator src; int index; for (src = sorted_points.begin(), index = 0; src != sorted_points.end(); ++src, ++index) { *dst++ = src->second; if (index == first_index_to_remove) first_point_to_remove = dst; } return first_point_to_remove; } /// @cond SKIP_IN_MANUAL // This variant deduces the kernel from the iterator type. template InputIterator remove_outliers( InputIterator first, ///< iterator over the first input point InputIterator beyond, ///< past-the-end iterator PointPMap point_pmap, ///< property map: value_type of InputIterator -> Point_3 unsigned int k, ///< number of neighbors. double threshold_percent) ///< percentage of points to remove { typedef typename boost::property_traits::value_type Point; typedef typename Kernel_traits::Kernel Kernel; return remove_outliers( first,beyond, point_pmap, k,threshold_percent, Kernel()); } /// @endcond /// @cond SKIP_IN_MANUAL // This variant creates a default point property map = Identity_property_map. template InputIterator remove_outliers( InputIterator first, ///< iterator over the first input point InputIterator beyond, ///< past-the-end iterator unsigned int k, ///< number of neighbors. double threshold_percent) ///< percentage of points to remove { return remove_outliers( first,beyond, make_identity_property_map( typename std::iterator_traits::value_type()), k,threshold_percent); } /// @endcond } //namespace CGAL #endif // CGAL_REMOVE_OUTLIERS_H