// Copyright (c) 2009 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Stephane Tayeb // //****************************************************************************** // File Description : Lloyd move function //****************************************************************************** #ifndef CGAL_MESH_3_LLOYD_MOVE_H #define CGAL_MESH_3_LLOYD_MOVE_H #include #include #include #include #include namespace CGAL { namespace Mesh_3 { template > class Lloyd_move { typedef typename C3T3::Triangulation Tr; typedef typename Tr::Geom_traits Gt; typedef typename Tr::Cell_handle Cell_handle; typedef typename Tr::Vertex_handle Vertex_handle; typedef typename Tr::Edge Edge; typedef typename Tr::Facet Facet; typedef typename Tr::Point Point_3; typedef typename Point_3::Point Bare_point_3; typedef typename std::vector Cell_vector; typedef typename std::vector Vertex_vector; typedef typename std::vector Facet_vector; typedef typename Gt::FT FT; typedef typename Gt::Vector_3 Vector_3; typedef typename Gt::Tetrahedron_3 Tetrahedron_3; typedef typename Gt::Plane_3 Plane_3; typedef typename Gt::Point_2 Point_2; typedef typename Gt::Aff_transformation_3 Aff_transformation_3; public: typedef SizingField Sizing_field; /** * @brief Return move to apply on \c v according to Lloyd optimization * function */ Vector_3 operator()(const Vertex_handle& v, const Cell_vector& incident_cells, const C3T3& c3t3, const Sizing_field& sizing_field = Sizing_field() ) const { switch ( c3t3.in_dimension(v) ) { case 3: return lloyd_move_inside_domain(v,incident_cells,c3t3,sizing_field); break; case 2: return lloyd_move_on_boundary(v,c3t3,sizing_field); break; case 1: case 0: case -1: // Don't move edge or corner vertices // N.B.: dimension = -1 is possible if we added points on a far sphere // during initialization return CGAL::NULL_VECTOR; break; default: // Should not happen CGAL_assertion(false); return CGAL::NULL_VECTOR; break; } return CGAL::NULL_VECTOR; } #if defined(CGAL_MESH_3_OPTIMIZER_VERBOSE) \ || defined (CGAL_MESH_3_EXPORT_PERFORMANCE_DATA) static std::string name() { return std::string("Lloyd"); } #endif private: /** * Project_on_plane defines operator() to project Point_3 object on plane. */ struct Project_on_plane { Project_on_plane(const Plane_3& plane) : plane_(plane) {} Point_3 operator()(const Point_3& p) const { return Gt().construct_projected_point_3_object()(plane_,p); } private: const Plane_3& plane_; }; /** * To_2d defines operator() to transform Point_3 into Point_2 */ struct To_2d { To_2d(const Aff_transformation_3& to_2d) : to_2d_(to_2d) {} Point_2 operator()(const Point_3& p) const { return Point_2(to_2d_.transform(p).x(), to_2d_.transform(p).y()); } private: const Aff_transformation_3& to_2d_; }; /** * To_3d defines operator() to transform Point_2 into Point_3 */ struct To_3d { To_3d(const Aff_transformation_3& to_3d) : to_3d_(to_3d) {} Point_3 operator()(const Point_2& p) const { return to_3d_.transform(Point_3(Bare_point_3(p.x(),p.y(),0))); } private: const Aff_transformation_3& to_3d_; }; /** * Return move for inside vertex \c v */ Vector_3 lloyd_move_inside_domain(const Vertex_handle& v, const Cell_vector& incident_cells, const C3T3& c3t3, const Sizing_field& sizing_field) const { // Move data Vector_3 move = CGAL::NULL_VECTOR; FT sum_masses(0); // ----------------------------------- // Tessellate Voronoi cell // ----------------------------------- // get cells incident to v const Tr& tr = c3t3.triangulation(); // Stores vertex that have already been used std::set treated_vertex; for (typename Cell_vector::const_iterator cit = incident_cells.begin(); cit != incident_cells.end(); ++cit) { const int& k = (*cit)->index(v); // For each vertex of the cell for ( int i=1 ; i<4 ; ++i ) { const Vertex_handle& v1 = (*cit)->vertex((k+i)&3); if ( treated_vertex.find(v1) != treated_vertex.end() ) continue; // Vertex has not been treated: turn around edge(v,v1) treated_vertex.insert(v1); turn_around_edge(v, Edge(*cit,k,(k+i)&3), tr, move, sum_masses, sizing_field); } } CGAL_assertion(sum_masses != 0.0); return move / sum_masses; } /** * Return move for on boundary vertex \c v */ Vector_3 lloyd_move_on_boundary(const Vertex_handle& v, const C3T3& c3t3, const Sizing_field& sizing_field) const { CGAL_precondition(c3t3.in_dimension(v) == 2); // get all surface delaunay ball point std::vector points = extract_lloyd_boundary_points(v,c3t3); switch(points.size()) { case 0: // could happen if there is an isolated surface point into mesh case 1: // don't do anything, as v->point() is already on the surface { return CGAL::NULL_VECTOR; break; } case 2: // centroid { const Point_3& a = points.front(); const Point_3& b = points.back(); return centroid_segment_move(v,a,b,sizing_field); break; } case 3: // triangle centroid { const Point_3& a = points.at(0); const Point_3& b = points.at(1); const Point_3& c = points.at(2); return centroid_triangle_move(v,a,b,c,sizing_field); break; } default: // >= 4 points, centroid + projection return centroid_general_move(v,points.begin(),points.end(),sizing_field); break; } return CGAL::NULL_VECTOR; } /** * Returns a vector containing surface delaunay ball center of surface * facets incident to vertex \c v */ std::vector extract_lloyd_boundary_points(const Vertex_handle& v, const C3T3& c3t3) const { Facet_vector incident_facets; incident_facets.reserve(64); c3t3.triangulation().finite_incident_facets(v,std::back_inserter(incident_facets)); std::vector points; points.reserve(64); // Get c3t3's facets incident to v, and add their surface delaunay ball // center to output for ( typename Facet_vector::iterator fit = incident_facets.begin() ; fit != incident_facets.end() ; ++fit ) { if ( ! c3t3.is_in_complex(*fit) ) continue; points.push_back(fit->first->get_facet_surface_center(fit->second)); } return points; } /** * Return move from \c v to centroid of segment [a,b] */ Vector_3 centroid_segment_move(const Vertex_handle& v, const Point_3& a, const Point_3& b, const Sizing_field& sizing_field) const { typename Gt::Construct_vector_3 vector = Gt().construct_vector_3_object(); const Point_3& p = v->point(); FT da = density_1d(a,v,sizing_field); FT db = density_1d(b,v,sizing_field); CGAL_assertion( !is_zero(da+db) ); return ( (vector(p,a)*da + vector(p,b)*db) / (da+db) ); } /** * Return move from \c v to centroid of triangle [a,b,c] */ Vector_3 centroid_triangle_move(const Vertex_handle& v, const Point_3& a, const Point_3& b, const Point_3& c, const Sizing_field& sizing_field) const { typename Gt::Construct_vector_3 vector = Gt().construct_vector_3_object(); const Point_3& p = v->point(); FT da = density_2d(a,v,sizing_field); FT db = density_2d(b,v,sizing_field); FT dc = density_2d(c,v,sizing_field); CGAL_assertion( !is_zero(da+db+dc) ); return ( (da*vector(p,a) + db*vector(p,b) + dc*vector(p,c)) / (da+db+dc) ); } /** * compute approximate centroid of intersection between 3D voronoi cell and * boundary. The input is the set of intersection points between Voronoi * edges and the boundary. */ template Vector_3 centroid_general_move(const Vertex_handle& v, ForwardIterator first, ForwardIterator last, const Sizing_field& sizing_field) const { CGAL_assertion(std::distance(first,last) > 3); // Fit plane using point-based PCA: compute least square fitting plane Plane_3 plane; CGAL::linear_least_squares_fitting_3(first,last,plane,Dimension_tag<0>()); // Project all points to the plane std::transform(first, last, first, Project_on_plane(plane)); CGAL_assertion(std::distance(first,last) > 3); // Get 2D-3D transformations Aff_transformation_3 to_3d = compute_to_3d_transform(plane, *first); Aff_transformation_3 to_2d = to_3d.inverse(); // Transform to 2D std::vector points_2d; points_2d.reserve(std::distance(first,last)); std::transform(first, last, std::back_inserter(points_2d), To_2d(to_2d)); // Compute 2D convex hull CGAL_assertion(points_2d.size() > 3); std::vector ch_2d; // AF: We have to debug CGAL::convex_hull_2 = ch_akl_toussaint // as it triggers filter failures unnecessarily CGAL::ch_graham_andrew(points_2d.begin(),points_2d.end(), std::back_inserter(ch_2d)); // Lift back convex hull to 3D std::vector polygon_3d; polygon_3d.reserve(ch_2d.size()); std::transform(ch_2d.begin(), ch_2d.end(), std::back_inserter(polygon_3d), To_3d(to_3d)); // Compute centroid using quadrature sizing return centroid_3d_polygon_move(v, polygon_3d.begin(), polygon_3d.end(), sizing_field); } /** * Return move from \c v to centroid of polygon[first,last] * Polygon has to be convex */ template Vector_3 centroid_3d_polygon_move(const Vertex_handle& v, ForwardIterator first, ForwardIterator last, const Sizing_field& sizing_field) const { CGAL_precondition(std::distance(first,last) >= 3); typename Gt::Construct_vector_3 vector = Gt().construct_vector_3_object(); typename Gt::Construct_centroid_3 centroid = Gt().construct_centroid_3_object(); typename Gt::Compute_area_3 area = Gt().compute_area_3_object(); // Vertex current position const Point_3& vertex_position = v->point(); // Use as reference point to triangulate const Point_3& a = *first++; const Point_3* b = &(*first++); // Treat first point (optimize density_2d call) const Point_3& c = *first++; Point_3 triangle_centroid = centroid(a,*b,c); FT density = density_2d(triangle_centroid, v, sizing_field); FT sum_masses = density * area(a,*b,c); Vector_3 move = sum_masses * vector(vertex_position, triangle_centroid); b = &c; // Next points while ( first != last ) { const Point_3& c = *first++; Point_3 triangle_centroid = centroid(a,*b,c); FT density = density_2d(triangle_centroid, v, sizing_field); FT mass = density * area(a,*b,c); move = move + mass * vector(vertex_position, triangle_centroid); sum_masses += mass; // Go one step forward b = &c; } CGAL_assertion(sum_masses != 0); return move / sum_masses; } /** * Returns the transformation from reference_point to plane */ Aff_transformation_3 compute_to_3d_transform(const Plane_3& plane, const Point_3& reference_point) const { typename Gt::Construct_base_vector_3 base = Gt().construct_base_vector_3_object(); typename Gt::Construct_orthogonal_vector_3 orthogonal_vector = Gt().construct_orthogonal_vector_3_object(); Vector_3 u = base(plane, 1); u = u / CGAL::sqrt(u*u); Vector_3 v = base(plane, 2); v = v / CGAL::sqrt(v*v); Vector_3 w = orthogonal_vector(plane); w = w / CGAL::sqrt(w*w); return Aff_transformation_3(u.x(),v.x(),w.x(),reference_point.x(), u.y(),v.y(),w.y(),reference_point.y(), u.z(),v.z(),w.z(),reference_point.z()); } /** * returns density_1d */ template FT density_1d(const Point_3& p, const Vertex_handle& v, const Sizing_field& sizing_field) const { FT s = sizing_field(p,v); CGAL_assertion(!is_zero(s)); // s^(d+2) return ( 1/(s*s*s) ); } /** * returns density_2d */ template FT density_2d(const Point_3& p, const Vertex_handle& v, const Sizing_field& sizing_field) const { FT s = use_v ? sizing_field(p,v) : sizing_field(p); CGAL_assertion(!is_zero(s)); // s^(d+2) return ( 1/(s*s*s*s) ); } /** * returns density_3d */ template FT density_3d(const Point_3& p, const Cell_handle& cell, const Sizing_field& sizing_field) const { FT s = sizing_field(p,cell); CGAL_assertion(!is_zero(s)); // s^(d+2) return ( 1/(s*s*s*s*s) ); } /** * Turns around edge \c edge and add values computed from tets made by * v->point() and circumcenters of \c edge incident cells * * Note that this function uses lots of dual() calls, so using a cell base * which stores the circumcenter improve efficiency. */ void turn_around_edge(const Vertex_handle& v, const Edge& edge, const Tr& tr, Vector_3& move, FT& sum_masses, const Sizing_field& sizing_field) const { typedef typename Tr::Cell_circulator Cell_circulator; typename Gt::Compute_volume_3 volume = Gt().compute_volume_3_object(); typename Gt::Construct_centroid_3 centroid = Gt().construct_centroid_3_object(); typename Gt::Construct_vector_3 vector = Gt().construct_vector_3_object(); Cell_circulator current_cell = tr.incident_cells(edge); Cell_circulator done = current_cell; // a & b are fixed points const Point_3& a = v->point(); const Point_3 b = tr.dual(current_cell++); CGAL_assertion(current_cell != done); // c & d are moving points Point_3 c = tr.dual(current_cell++); CGAL_assertion(current_cell != done); while ( current_cell != done ) { const Point_3 d = tr.dual(current_cell++); Point_3 tet_centroid = centroid(a,b,c,d); // Compute mass FT density = density_3d(tet_centroid, current_cell, sizing_field); FT abs_volume = CGAL::abs(volume(a,b,c,d)); FT mass = abs_volume * density; move = move + mass * vector(a,tet_centroid); sum_masses += mass; c = d; } } }; } // end namespace Mesh_3 } //namespace CGAL #endif // CGAL_MESH_3_LLOYD_MOVE_H