/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkCurvesLevelSetFunction_h #define itkCurvesLevelSetFunction_h #include "itkSegmentationLevelSetFunction.h" namespace itk { /** \class CurvesLevelSetFunction * * \brief This function is used in CurvesLevelSetImageFilter to * segment structures in images based on user supplied edge potential map. * * \par CurvesLevelSetFunction is a subclass of the generic LevelSetFunction. * It is useful for segmentations based on a user supplied edge potential map which * has values close to zero in regions near edges (or high image gradient) and values * close to one in regions with relatively constant intensity. Typically, the edge * potential map is a function of the gradient, for example: * * \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f] * \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f] * * where \f$ I \f$ is image intensity and * \f$ (\nabla * G) \f$ is the derivative of Gaussian operator. * * \par In this function both the propagation term \f$ P(\mathbf{x}) \f$ * and the curvature spatial modifier term $\f$ Z(\mathbf{x}) \f$ are taken directly * from the edge potential image. The edge potential image is set via the * SetFeatureImage() method. An advection term \f$ A(\mathbf{x}) \f$ is constructed * from the negative gradient of the edge potential image. This term behaves like * a doublet attracting the contour to the edges. * * \par This implementation is based on: * L. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, A. Nabavi, * and C.-F. Westin, Curves: Curve evolution for vessel segmentation. * Medical Image Analysis, 5:195-206, 2001. * * \sa LevelSetFunction * \sa SegmentationLevelSetImageFunction * \sa GeodesicActiveContourLevelSetImageFilter * * \ingroup FiniteDifferenceFunctions * \ingroup ITKLevelSets */ template< typename TImageType, typename TFeatureImageType = TImageType > class ITK_TEMPLATE_EXPORT CurvesLevelSetFunction: public SegmentationLevelSetFunction< TImageType, TFeatureImageType > { public: /** Standard class typedefs. */ typedef CurvesLevelSetFunction Self; typedef SegmentationLevelSetFunction< TImageType, TFeatureImageType > Superclass; typedef LevelSetFunction< TImageType > SuperSuperclass; typedef SmartPointer< Self > Pointer; typedef SmartPointer< const Self > ConstPointer; typedef TFeatureImageType FeatureImageType; /** Method for creation through the object factory. */ itkNewMacro(Self); /** Run-time type information (and related methods) */ itkTypeMacro(CurvesLevelSetFunction, SegmentationLevelSetFunction); /** Extract some parameters from the superclass. */ typedef typename SuperSuperclass::PixelType PixelType; typedef typename Superclass::ImageType ImageType; typedef typename Superclass::NeighborhoodType NeighborhoodType; typedef typename Superclass::ScalarValueType ScalarValueType; typedef typename Superclass::FeatureScalarType FeatureScalarType; typedef typename Superclass::RadiusType RadiusType; typedef typename SuperSuperclass::FloatOffsetType FloatOffsetType; typedef typename SuperSuperclass::GlobalDataStruct GlobalDataStruct; typedef typename Superclass::VectorImageType VectorImageType; /** Extract some parameters from the superclass. */ itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension); /** Compute speed image from feature image. */ virtual void CalculateSpeedImage() ITK_OVERRIDE; /** Compute the advection field from feature image. */ virtual void CalculateAdvectionImage() ITK_OVERRIDE; /** The curvature speed is same as the propagation speed. */ virtual ScalarValueType CurvatureSpeed(const NeighborhoodType & neighborhood, const FloatOffsetType & offset, GlobalDataStruct *gd) const ITK_OVERRIDE { return this->PropagationSpeed(neighborhood, offset, gd); } /** Set/Get the sigma for the Gaussian kernel used to compute the gradient * of the feature image needed for the advection term of the equation. */ void SetDerivativeSigma(const double v) { m_DerivativeSigma = v; } double GetDerivativeSigma() { return m_DerivativeSigma; } virtual void Initialize(const RadiusType & r) ITK_OVERRIDE; protected: CurvesLevelSetFunction() : m_Center(0), m_DerivativeSigma(1.0) { //Curvature term is the minimal curvature. this->UseMinimalCurvatureOn(); this->SetAdvectionWeight(NumericTraits< ScalarValueType >::OneValue()); this->SetPropagationWeight(NumericTraits< ScalarValueType >::OneValue()); this->SetCurvatureWeight(NumericTraits< ScalarValueType >::OneValue()); } virtual ~CurvesLevelSetFunction() ITK_OVERRIDE {} ITK_DISALLOW_COPY_AND_ASSIGN(CurvesLevelSetFunction); void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE { Superclass::PrintSelf(os, indent); os << indent << "DerivativeSigma: " << m_DerivativeSigma << std::endl; } private: /** Slices for the ND neighborhood. */ std::slice x_slice[ImageDimension]; /** The offset of the center pixel in the neighborhood. */ OffsetValueType m_Center; /** Stride length along the y-dimension. */ OffsetValueType m_xStride[ImageDimension]; double m_DerivativeSigma; }; } // end namespace itk #ifndef ITK_MANUAL_INSTANTIATION #include "itkCurvesLevelSetFunction.hxx" #endif #endif