/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkElasticBodyReciprocalSplineKernelTransform_h #define itkElasticBodyReciprocalSplineKernelTransform_h #include "itkKernelTransform.h" namespace itk { /** \class ElasticBodyReciprocalSplineKernelTransform * This class defines the elastic body spline (EBS) transformation. * It is implemented in as straightforward a manner as possible from * the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms, * Vol. 16 No. 3 June 1997 * Taken from the paper: * The EBS "is based on a physical model of a homogeneous, isotropic, * three-dimensional elastic body. The model can approximate the way * that some physical objects deform". * * \ingroup ITKTransform */ template class ITK_TEMPLATE_EXPORT ElasticBodyReciprocalSplineKernelTransform: public KernelTransform { public: /** Standard class typedefs. */ typedef ElasticBodyReciprocalSplineKernelTransform Self; typedef KernelTransform Superclass; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; /** Run-time type information (and related methods). */ itkTypeMacro(ElasticBodyReciprocalSplineKernelTransform, KernelTransform); /** New macro for creation of through a Smart Pointer */ itkNewMacro(Self); /** Scalar type. */ typedef typename Superclass::ScalarType ScalarType; /** Parameters type. */ typedef typename Superclass::ParametersType ParametersType; typedef typename Superclass::FixedParametersType FixedParametersType; /** Jacobian type. */ typedef typename Superclass::JacobianType JacobianType; /** Dimension of the domain space. */ itkStaticConstMacro(SpaceDimension, unsigned int, Superclass::SpaceDimension); /** Set alpha. Alpha is related to Poisson's Ratio (\f$\nu\f$) as * \f$\alpha = 8 ( 1 - \nu ) - 1\f$ */ itkSetMacro(Alpha, TParametersValueType); /** Get alpha */ itkGetConstMacro(Alpha, TParametersValueType); typedef typename Superclass::InputPointType InputPointType; typedef typename Superclass::OutputPointType OutputPointType; typedef typename Superclass::InputVectorType InputVectorType; typedef typename Superclass::OutputVectorType OutputVectorType; typedef typename Superclass::InputCovariantVectorType InputCovariantVectorType; typedef typename Superclass::OutputCovariantVectorType OutputCovariantVectorType; protected: ElasticBodyReciprocalSplineKernelTransform(); virtual ~ElasticBodyReciprocalSplineKernelTransform() ITK_OVERRIDE; void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE; typedef typename Superclass::GMatrixType GMatrixType; /** Compute G(x) * For the elastic body spline, this is: * G(x) = [alpha*r(x)*I - 3*x*x'/r(x)] * \f$ G(x) = [\alpha*r(x)*I - 3*x*x'/r(x) ]\f$ * where * \f$\alpha = 8 ( 1 - \nu ) - 1\f$ * \f$\nu\f$ is Poisson's Ratio * r(x) = Euclidean norm = sqrt[x1^2 + x2^2 + x3^2] * \f[ r(x) = \sqrt{ x_1^2 + x_2^2 + x_3^2 } \f] * I = identity matrix */ virtual void ComputeG(const InputVectorType & landmarkVector, GMatrixType & gmatrix) const ITK_OVERRIDE; /** alpha, Poisson's ratio */ TParametersValueType m_Alpha; private: ITK_DISALLOW_COPY_AND_ASSIGN(ElasticBodyReciprocalSplineKernelTransform); }; } // namespace itk #ifndef ITK_MANUAL_INSTANTIATION #include "itkElasticBodyReciprocalSplineKernelTransform.hxx" #endif #endif // itkElasticBodyReciprocalSplineKernelTransform_h