/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGPUGradientNDAnisotropicDiffusionFunction_h #define itkGPUGradientNDAnisotropicDiffusionFunction_h #include "itkGPUScalarAnisotropicDiffusionFunction.h" #include "itkNeighborhoodAlgorithm.h" #include "itkNeighborhoodInnerProduct.h" #include "itkDerivativeOperator.h" namespace itk { /** \class GPUGradientNDAnisotropicDiffusionFunction * * This class implements an N-dimensional version of the classic Perona-Malik * anisotropic diffusion equation for scalar-valued images on the GPU. See * itkAnisotropicDiffusionFunction for an overview of the anisotropic diffusion * framework and equation. * * \par * The conductance term for this implementation is chosen as a function of the * gradient magnitude of the image at each point, reducing the strength of * diffusion at edge pixels. * * \f[C(\mathbf{x}) = e^{-(\frac{\parallel \nabla U(\mathbf{x}) \parallel}{K})^2}\f]. * * \par * The numerical implementation of this equation is similar to that described * in the Perona-Malik paper below, but uses a more robust technique * for gradient magnitude estimation and has been generalized to N-dimensions. * * \par References * Pietro Perona and Jalhandra Malik, ``Scale-space and edge detection using * anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine * Intelligence, vol. 12, pp. 629-639, 1990. * * \ingroup ITKGPUAnisotropicSmoothing */ /** Create a helper GPU Kernel class for GPUGradientNDAnisotropicDiffusionFunction */ itkGPUKernelClassMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel); template< typename TImage > class ITK_TEMPLATE_EXPORT GPUGradientNDAnisotropicDiffusionFunction : public GPUScalarAnisotropicDiffusionFunction< TImage > { public: /** Standard class typedefs. */ typedef GPUGradientNDAnisotropicDiffusionFunction Self; typedef GPUScalarAnisotropicDiffusionFunction< TImage > Superclass; typedef SmartPointer< Self > Pointer; typedef SmartPointer< const Self > ConstPointer; /** Method for creation through the object factory. */ itkNewMacro(Self); /** Run-time type information (and related methods) */ itkTypeMacro(GPUGradientNDAnisotropicDiffusionFunction, GPUScalarAnisotropicDiffusionFunction); /** Inherit some parameters from the superclass type. */ typedef typename Superclass::ImageType ImageType; typedef typename Superclass::PixelType PixelType; typedef typename Superclass::PixelRealType PixelRealType; typedef typename Superclass::TimeStepType TimeStepType; typedef typename Superclass::RadiusType RadiusType; typedef typename Superclass::NeighborhoodType NeighborhoodType; typedef typename Superclass::FloatOffsetType FloatOffsetType; typedef SizeValueType NeighborhoodSizeValueType; /** Inherit some parameters from the superclass type. */ itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension); /** Get OpenCL Kernel source as a string, creates a GetOpenCLSource method */ itkGetOpenCLSourceFromKernelMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel); /** Compute the equation value. */ virtual void GPUComputeUpdate( const typename TImage::Pointer output, typename TImage::Pointer buffer, void *globalData ) ITK_OVERRIDE; /** This method is called prior to each iteration of the solver. */ virtual void InitializeIteration() ITK_OVERRIDE { m_K = static_cast< PixelType >( this->GetAverageGradientMagnitudeSquared() * this->GetConductanceParameter() * this->GetConductanceParameter() * -2.0f ); } protected: GPUGradientNDAnisotropicDiffusionFunction(); ~GPUGradientNDAnisotropicDiffusionFunction() ITK_OVERRIDE {} /** Inner product function. */ NeighborhoodInnerProduct< ImageType > m_InnerProduct; /** Slices for the ND neighborhood. */ std::slice x_slice[ImageDimension]; std::slice xa_slice[ImageDimension][ImageDimension]; std::slice xd_slice[ImageDimension][ImageDimension]; /** Derivative operator. */ DerivativeOperator< PixelType, itkGetStaticConstMacro(ImageDimension) > dx_op; /** Modified global average gradient magnitude term. */ PixelType m_K; NeighborhoodSizeValueType m_Center; NeighborhoodSizeValueType m_Stride[ImageDimension]; static double m_MIN_NORM; private: ITK_DISALLOW_COPY_AND_ASSIGN(GPUGradientNDAnisotropicDiffusionFunction); }; } // end namespace itk #ifndef ITK_MANUAL_INSTANTIATION #include "itkGPUGradientNDAnisotropicDiffusionFunction.hxx" #endif #endif