/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGaussianDerivativeSpatialFunction_hxx #define itkGaussianDerivativeSpatialFunction_hxx #include #include "itkMath.h" #include "itkGaussianDerivativeSpatialFunction.h" namespace itk { template< typename TOutput, unsigned int VImageDimension, typename TInput > GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput > ::GaussianDerivativeSpatialFunction() { m_Mean = ArrayType::Filled(0.0); m_Sigma = ArrayType::Filled(1.0); m_Scale = 1.0; m_Normalized = false; m_Direction = 0; } template< typename TOutput, unsigned int VImageDimension, typename TInput > GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput > ::~GaussianDerivativeSpatialFunction() {} template< typename TOutput, unsigned int VImageDimension, typename TInput > typename GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput >::OutputType GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput > ::Evaluate(const TInput & position) const { // Normalizing the Gaussian is important for statistical applications // but is generally not desirable for creating images because of the // very small numbers involved (would need to use doubles) double prefixDenom; if ( m_Normalized ) { prefixDenom = m_Sigma[m_Direction] * m_Sigma[m_Direction]; for ( unsigned int i = 0; i < VImageDimension; i++ ) { prefixDenom *= m_Sigma[i]; } prefixDenom *= 2 * std::pow(2 * itk::Math::pi, VImageDimension / 2.0); } else { prefixDenom = 1.0; } double suffixExp = 0; for ( unsigned int i = 0; i < VImageDimension; i++ ) { suffixExp += ( position[m_Direction] - m_Mean[m_Direction] ) * ( position[m_Direction] - m_Mean[m_Direction] ) / ( 2 * m_Sigma[m_Direction] * m_Sigma[m_Direction] ); } double value = -2 * ( position[m_Direction] - m_Mean[m_Direction] ) * m_Scale * ( 1 / prefixDenom ) * std::exp( -1 * suffixExp); return static_cast(value); } /** Evaluate the function at a given position and return a vector */ template< typename TOutput, unsigned int VImageDimension, typename TInput > typename GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput >::VectorType GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput > ::EvaluateVector(const TInput & position) const { VectorType gradient; for ( unsigned int i = 0; i < VImageDimension; i++ ) { m_Direction = i; gradient[i] = this->Evaluate(position); } return gradient; } template< typename TOutput, unsigned int VImageDimension, typename TInput > void GaussianDerivativeSpatialFunction< TOutput, VImageDimension, TInput > ::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "Sigma: " << m_Sigma << std::endl; os << indent << "Mean: " << m_Mean << std::endl; os << indent << "Scale: " << m_Scale << std::endl; os << indent << "Normalized?: " << m_Normalized << std::endl; os << indent << "Direction: " << m_Direction << std::endl; } } // end namespace itk #endif