/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGaussianSpatialFunction_hxx #define itkGaussianSpatialFunction_hxx #include #include "itkMath.h" #include "itkGaussianSpatialFunction.h" namespace itk { template< typename TOutput, unsigned int VImageDimension, typename TInput > GaussianSpatialFunction< TOutput, VImageDimension, TInput > ::GaussianSpatialFunction() : m_Scale( 1.0 ), m_Normalized( false ) { m_Mean = ArrayType::Filled(10.0); m_Sigma = ArrayType::Filled(5.0); } template< typename TOutput, unsigned int VImageDimension, typename TInput > GaussianSpatialFunction< TOutput, VImageDimension, TInput > ::~GaussianSpatialFunction() {} template< typename TOutput, unsigned int VImageDimension, typename TInput > typename GaussianSpatialFunction< TOutput, VImageDimension, TInput >::OutputType GaussianSpatialFunction< TOutput, VImageDimension, TInput > ::Evaluate(const TInput & position) const { // We have to compute the Gaussian in several stages, because of the // n-dimensional generalization // Normalizing the Gaussian is important for statistical applications // but is generally not desirable for creating images because of the // very small numbers involved (would need to use doubles) double prefixDenom = 1.0; if ( m_Normalized ) { const double squareRootOfTwoPi = std::sqrt(2.0 * itk::Math::pi); for ( unsigned int i = 0; i < VImageDimension; ++i ) { prefixDenom *= m_Sigma[i] * squareRootOfTwoPi; } } double suffixExp = 0; for ( unsigned int i = 0; i < VImageDimension; ++i ) { suffixExp += ( position[i] - m_Mean[i] ) * ( position[i] - m_Mean[i] ) / ( 2 * m_Sigma[i] * m_Sigma[i] ); } const double value = m_Scale * ( 1 / prefixDenom ) * std::exp(-1 * suffixExp); return static_cast< TOutput >( value ); } template< typename TOutput, unsigned int VImageDimension, typename TInput > void GaussianSpatialFunction< TOutput, VImageDimension, TInput > ::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "Sigma: " << m_Sigma << std::endl; os << indent << "Mean: " << m_Mean << std::endl; os << indent << "Scale: " << m_Scale << std::endl; os << indent << "Normalized?: " << m_Normalized << std::endl; } } // end namespace itk #endif