/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGradientDescentOptimizerv4_hxx #define itkGradientDescentOptimizerv4_hxx #include "itkGradientDescentOptimizerv4.h" namespace itk { template GradientDescentOptimizerv4Template ::GradientDescentOptimizerv4Template() : m_LearningRate( NumericTraits::OneValue() ), m_MinimumConvergenceValue( 1e-8 ), m_ConvergenceValue( NumericTraits::max() ), m_CurrentBestValue( NumericTraits::max() ), m_ReturnBestParametersAndValue( false ) { this->m_PreviousGradient.Fill( NumericTraits::ZeroValue() ); } template GradientDescentOptimizerv4Template ::~GradientDescentOptimizerv4Template() {} template void GradientDescentOptimizerv4Template ::StartOptimization( bool doOnlyInitialization ) { // Must call the superclass version for basic validation and setup. Superclass::StartOptimization( doOnlyInitialization ); if( this->m_ReturnBestParametersAndValue ) { this->m_BestParameters = this->GetCurrentPosition( ); this->m_CurrentBestValue = NumericTraits< MeasureType >::max(); } this->m_CurrentIteration = 0; this->m_ConvergenceValue = NumericTraits::max(); if( ! doOnlyInitialization ) { this->ResumeOptimization(); } } template void GradientDescentOptimizerv4Template ::StopOptimization(void) { if( this->m_ReturnBestParametersAndValue ) { this->m_Metric->SetParameters( this->m_BestParameters ); this->m_CurrentMetricValue = this->m_CurrentBestValue; } Superclass::StopOptimization(); } template void GradientDescentOptimizerv4Template ::ResumeOptimization() { this->m_StopConditionDescription.str(""); this->m_StopConditionDescription << this->GetNameOfClass() << ": "; this->InvokeEvent( StartEvent() ); this->m_Stop = false; while( ! this->m_Stop ) { // Do not run the loop if the maximum number of iterations is reached or its value is zero. if ( this->m_CurrentIteration >= this->m_NumberOfIterations ) { this->m_StopConditionDescription << "Maximum number of iterations (" << this->m_NumberOfIterations << ") exceeded."; this->m_StopCondition = Superclass::MAXIMUM_NUMBER_OF_ITERATIONS; this->StopOptimization(); break; } // Save previous value with shallow swap that will be used by child optimizer. swap( this->m_PreviousGradient, this->m_Gradient ); // Compute metric value/derivative. try { // m_Gradient will be sized as needed by metric. If it's already // proper size, no new allocation is done. this->m_Metric->GetValueAndDerivative( this->m_CurrentMetricValue, this->m_Gradient ); } catch ( ExceptionObject & err ) { this->m_StopCondition = Superclass::COSTFUNCTION_ERROR; this->m_StopConditionDescription << "Metric error during optimization"; this->StopOptimization(); // Pass exception to caller throw err; } // Check if optimization has been stopped externally. // (Presumably this could happen from a multi-threaded client app?) if ( this->m_Stop ) { this->m_StopConditionDescription << "StopOptimization() called"; break; } // Check the convergence by WindowConvergenceMonitoringFunction. if ( this->m_UseConvergenceMonitoring ) { this->m_ConvergenceMonitoring->AddEnergyValue( this->m_CurrentMetricValue ); try { this->m_ConvergenceValue = this->m_ConvergenceMonitoring->GetConvergenceValue(); if (this->m_ConvergenceValue <= this->m_MinimumConvergenceValue) { this->m_StopCondition = Superclass::CONVERGENCE_CHECKER_PASSED; this->m_StopConditionDescription << "Convergence checker passed at iteration " << this->m_CurrentIteration << "."; this->StopOptimization(); break; } } catch(std::exception & e) { itkWarningMacro(<< "GetConvergenceValue() failed with exception: " << e.what() << std::endl); } } // Advance one step along the gradient. // This will modify the gradient and update the transform. this->AdvanceOneStep(); // Store best value and position if ( this->m_ReturnBestParametersAndValue && this->m_CurrentMetricValue < this->m_CurrentBestValue ) { this->m_CurrentBestValue = this->m_CurrentMetricValue; this->m_BestParameters = this->GetCurrentPosition( ); } // Update and check iteration count this->m_CurrentIteration++; } //while (!m_Stop) } template void GradientDescentOptimizerv4Template ::AdvanceOneStep() { itkDebugMacro("AdvanceOneStep"); // Begin threaded gradient modification. // Scale by gradient scales, then estimate the learning // rate if options are set to (using the scaled gradient), // then modify by learning rate. The m_Gradient variable // is modified in-place. this->ModifyGradientByScales(); this->EstimateLearningRate(); this->ModifyGradientByLearningRate(); try { // Pass gradient to transform and let it do its own updating this->m_Metric->UpdateTransformParameters( this->m_Gradient ); } catch ( ExceptionObject & err ) { this->m_StopCondition = Superclass::UPDATE_PARAMETERS_ERROR; this->m_StopConditionDescription << "UpdateTransformParameters error"; this->StopOptimization(); // Pass exception to caller throw err; } this->InvokeEvent( IterationEvent() ); } template void GradientDescentOptimizerv4Template ::ModifyGradientByScalesOverSubRange( const IndexRangeType& subrange ) { const ScalesType& scales = this->GetScales(); const ScalesType& weights = this->GetWeights(); ScalesType factor( scales.Size() ); if( this->GetWeightsAreIdentity() ) { for( SizeValueType i=0; i < factor.Size(); i++ ) { factor[i] = NumericTraits::OneValue() / scales[i]; } } else { for( SizeValueType i=0; i < factor.Size(); i++ ) { factor[i] = weights[i] / scales[i]; } } // Loop over the range. It is inclusive. for ( IndexValueType j = subrange[0]; j <= subrange[1]; j++ ) { // scales is checked during StartOptmization for values <= // machine epsilon. // Take the modulo of the index to handle gradients from transforms // with local support. The gradient array stores the gradient of local // parameters at each local index with linear packing. IndexValueType index = j % scales.Size(); this->m_Gradient[j] = this->m_Gradient[j] * factor[index]; } } template void GradientDescentOptimizerv4Template ::ModifyGradientByLearningRateOverSubRange( const IndexRangeType& subrange ) { // Loop over the range. It is inclusive. for ( IndexValueType j = subrange[0]; j <= subrange[1]; j++ ) { this->m_Gradient[j] = this->m_Gradient[j] * this->m_LearningRate; } } template void GradientDescentOptimizerv4Template ::EstimateLearningRate() { if ( this->m_ScalesEstimator.IsNull() ) { return; } if ( this->m_DoEstimateLearningRateAtEachIteration || (this->m_DoEstimateLearningRateOnce && this->m_CurrentIteration == 0) ) { TInternalComputationValueType stepScale = this->m_ScalesEstimator->EstimateStepScale(this->m_Gradient); if (stepScale <= NumericTraits::epsilon()) { this->m_LearningRate = NumericTraits::OneValue(); } else { this->m_LearningRate = this->m_MaximumStepSizeInPhysicalUnits / stepScale; } } } template void GradientDescentOptimizerv4Template ::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "LearningRate: " << static_cast< typename NumericTraits< TInternalComputationValueType >::PrintType >( this->m_LearningRate ) << std::endl; os << indent << "MinimumConvergenceValue: " << this->m_MinimumConvergenceValue << std::endl; os << indent << "ConvergenceValue: " << static_cast< typename NumericTraits< TInternalComputationValueType >::PrintType >( this->m_ConvergenceValue ) << std::endl; os << indent << "CurrentBestValue: " << static_cast< typename NumericTraits< MeasureType >::PrintType >( this->m_CurrentBestValue ) << std::endl; os << indent << "BestParameters: " << static_cast< typename NumericTraits< ParametersType >::PrintType >( this->m_BestParameters ) << std::endl; os << indent << "ReturnBestParametersAndValue: " << ( this->m_ReturnBestParametersAndValue ? "On" : "Off" ) << std::endl; os << indent << "PreviousGradient: " << static_cast< typename NumericTraits< DerivativeType >::PrintType >( this->m_PreviousGradient ) << std::endl; } }//namespace itk #endif