/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkGradientNDAnisotropicDiffusionFunction_hxx #define itkGradientNDAnisotropicDiffusionFunction_hxx #include "itkNumericTraits.h" #include "itkGradientNDAnisotropicDiffusionFunction.h" namespace itk { template< typename TImage > double GradientNDAnisotropicDiffusionFunction< TImage > ::m_MIN_NORM = 1.0e-10; template< typename TImage > GradientNDAnisotropicDiffusionFunction< TImage > ::GradientNDAnisotropicDiffusionFunction() : m_K(0.0) { unsigned int i, j; RadiusType r; for ( i = 0; i < ImageDimension; ++i ) { r[i] = 1; } this->SetRadius(r); // Dummy neighborhood used to set up the slices. Neighborhood< PixelType, ImageDimension > it; it.SetRadius(r); // Slice the neighborhood m_Center = it.Size() / 2; for ( i = 0; i < ImageDimension; ++i ) { m_Stride[i] = it.GetStride(i); } for ( i = 0; i < ImageDimension; ++i ) { x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]); } for ( i = 0; i < ImageDimension; ++i ) { for ( j = 0; j < ImageDimension; ++j ) { // For taking derivatives in the i direction that are offset one // pixel in the j direction. xa_slice[i][j] = std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] ); xd_slice[i][j] = std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] ); } } // Allocate the derivative operator. dx_op.SetDirection(0); // Not relevant, will be applied in a slice-based // fashion. dx_op.SetOrder(1); dx_op.CreateDirectional(); } template< typename TImage > typename GradientNDAnisotropicDiffusionFunction< TImage >::PixelType GradientNDAnisotropicDiffusionFunction< TImage > ::ComputeUpdate(const NeighborhoodType & it, void *, const FloatOffsetType &) { unsigned int i, j; double accum; double accum_d; double Cx; double Cxd; // PixelType is scalar in this context PixelRealType delta; PixelRealType dx_forward; PixelRealType dx_backward; PixelRealType dx[ImageDimension]; PixelRealType dx_aug; PixelRealType dx_dim; delta = NumericTraits< PixelRealType >::ZeroValue(); // Calculate the centralized derivatives for each dimension. for ( i = 0; i < ImageDimension; i++ ) { dx[i] = ( it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center - m_Stride[i]) ) / 2.0f; dx[i] *= this->m_ScaleCoefficients[i]; } for ( i = 0; i < ImageDimension; i++ ) { // "Half" directional derivatives dx_forward = it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center); dx_forward *= this->m_ScaleCoefficients[i]; dx_backward = it.GetPixel(m_Center) - it.GetPixel(m_Center - m_Stride[i]); dx_backward *= this->m_ScaleCoefficients[i]; // Calculate the conductance terms. Conductance varies with each // dimension because the gradient magnitude approximation is different // along each dimension. accum = 0.0; accum_d = 0.0; for ( j = 0; j < ImageDimension; j++ ) { if ( j != i ) { dx_aug = ( it.GetPixel(m_Center + m_Stride[i] + m_Stride[j]) - it.GetPixel(m_Center + m_Stride[i] - m_Stride[j]) ) / 2.0f; dx_aug *= this->m_ScaleCoefficients[j]; dx_dim = ( it.GetPixel(m_Center - m_Stride[i] + m_Stride[j]) - it.GetPixel(m_Center - m_Stride[i] - m_Stride[j]) ) / 2.0f; dx_dim *= this->m_ScaleCoefficients[j]; accum += 0.25f * itk::Math::sqr(dx[j] + dx_aug); accum_d += 0.25f * itk::Math::sqr(dx[j] + dx_dim); } } if ( m_K == 0.0 ) { Cx = 0.0; Cxd = 0.0; } else { Cx = std::exp( ( itk::Math::sqr(dx_forward) + accum ) / m_K ); Cxd = std::exp( ( itk::Math::sqr(dx_backward) + accum_d ) / m_K ); } // Conductance modified first order derivatives. dx_forward = dx_forward * Cx; dx_backward = dx_backward * Cxd; // Conductance modified second order derivative. delta += dx_forward - dx_backward; } return static_cast< PixelType >( delta ); } } // end namespace itk #endif