/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkIterativeSupervisedTrainingFunction_h #define itkIterativeSupervisedTrainingFunction_h #include "itkTrainingFunctionBase.h" namespace itk { namespace Statistics { /** \class IterativeSupervisedTrainingFunction * \brief This is the itkIterativeSupervisedTrainingFunction class. * * \ingroup ITKNeuralNetworks */ template class ITK_TEMPLATE_EXPORT IterativeSupervisedTrainingFunction : public TrainingFunctionBase { public: typedef IterativeSupervisedTrainingFunction Self; typedef TrainingFunctionBase Superclass; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; /** Method for creation through the object factory. */ itkTypeMacro(IterativeSupervisedTrainingFunction, TrainingFunctionBase); /** Method for creation through the object factory. */ itkNewMacro(Self); typedef typename Superclass::NetworkType NetworkType; typedef typename Superclass::InternalVectorType InternalVectorType; void SetNumOfIterations(SizeValueType i); virtual void Train(NetworkType* net, TSample* samples, TTargetVector* targets) ITK_OVERRIDE; itkSetMacro(Threshold, ScalarType); protected: IterativeSupervisedTrainingFunction(); virtual ~IterativeSupervisedTrainingFunction() ITK_OVERRIDE{}; /** Method to print the object. */ virtual void PrintSelf( std::ostream& os, Indent indent ) const ITK_OVERRIDE; ScalarType m_Threshold; bool m_Stop; //stop condition }; } // end namespace Statistics } // end namespace itk #ifndef ITK_MANUAL_INSTANTIATION #include "itkIterativeSupervisedTrainingFunction.hxx" #endif #endif