/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkSymmetricForcesDemonsRegistrationFunction_hxx #define itkSymmetricForcesDemonsRegistrationFunction_hxx #include "itkSymmetricForcesDemonsRegistrationFunction.h" #include "itkMacro.h" #include "itkMath.h" namespace itk { /** * Default constructor */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::SymmetricForcesDemonsRegistrationFunction() { RadiusType r; r.Fill(0); this->SetRadius(r); m_TimeStep = 1.0; m_DenominatorThreshold = 1e-9; m_IntensityDifferenceThreshold = 0.001; this->SetMovingImage(ITK_NULLPTR); this->SetFixedImage(ITK_NULLPTR); m_FixedImageSpacing.Fill(1.0); m_Normalizer = 0.0; m_FixedImageGradientCalculator = GradientCalculatorType::New(); typename DefaultInterpolatorType::Pointer interp = DefaultInterpolatorType::New(); m_MovingImageInterpolator = static_cast< InterpolatorType * >( interp.GetPointer() ); m_Metric = NumericTraits< double >::max(); m_SumOfSquaredDifference = 0.0; m_NumberOfPixelsProcessed = 0L; m_RMSChange = NumericTraits< double >::max(); m_SumOfSquaredChange = 0.0; } /* * Standard "PrintSelf" method. */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > void SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::PrintSelf(std::ostream & os, Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "MovingImageIterpolator: "; os << m_MovingImageInterpolator.GetPointer() << std::endl; os << indent << "FixedImageGradientCalculator: "; os << m_FixedImageGradientCalculator.GetPointer() << std::endl; os << indent << "DenominatorThreshold: "; os << m_DenominatorThreshold << std::endl; os << indent << "IntensityDifferenceThreshold: "; os << m_IntensityDifferenceThreshold << std::endl; os << indent << "Metric: "; os << m_Metric << std::endl; os << indent << "SumOfSquaredDifference: "; os << m_SumOfSquaredDifference << std::endl; os << indent << "NumberOfPixelsProcessed: "; os << m_NumberOfPixelsProcessed << std::endl; os << indent << "RMSChange: "; os << m_RMSChange << std::endl; os << indent << "SumOfSquaredChange: "; os << m_SumOfSquaredChange << std::endl; } /** * */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > void SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::SetIntensityDifferenceThreshold(double threshold) { m_IntensityDifferenceThreshold = threshold; } /** * */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > double SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::GetIntensityDifferenceThreshold() const { return m_IntensityDifferenceThreshold; } /** * Set the function state values before each iteration */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > void SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::InitializeIteration() { if ( !this->GetMovingImage() || !this->GetFixedImage() || !m_MovingImageInterpolator ) { itkExceptionMacro(<< "MovingImage, FixedImage and/or Interpolator not set"); } // cache fixed image information m_FixedImageSpacing = this->GetFixedImage()->GetSpacing(); // compute the normalizer m_Normalizer = 0.0; for ( unsigned int k = 0; k < ImageDimension; k++ ) { m_Normalizer += m_FixedImageSpacing[k] * m_FixedImageSpacing[k]; } m_Normalizer /= static_cast< double >( ImageDimension ); // setup gradient calculator m_FixedImageGradientCalculator->SetInputImage( this->GetFixedImage() ); // setup moving image interpolator m_MovingImageInterpolator->SetInputImage( this->GetMovingImage() ); // initialize metric computation variables m_SumOfSquaredDifference = 0.0; m_NumberOfPixelsProcessed = 0L; m_SumOfSquaredChange = 0.0; } /** * Compute update at a non boundary neighbourhood */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > typename SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::PixelType SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::ComputeUpdate( const NeighborhoodType & it, void *gd, const FloatOffsetType & itkNotUsed(offset) ) { GlobalDataStruct *globalData = (GlobalDataStruct *)gd; const IndexType FirstIndex = this->GetFixedImage()->GetLargestPossibleRegion().GetIndex(); const IndexType LastIndex = this->GetFixedImage()->GetLargestPossibleRegion().GetIndex() + this->GetFixedImage()->GetLargestPossibleRegion().GetSize(); const IndexType index = it.GetIndex(); // Get fixed image related information // Note: no need to check the index is within // fixed image buffer. This is done by the external filter. const double fixedValue = (double)this->GetFixedImage()->GetPixel(index); const CovariantVectorType fixedGradient = m_FixedImageGradientCalculator->EvaluateAtIndex(index); // Get moving image related information IndexType tmpIndex = index; PointType mappedNeighPoint; CovariantVectorType movingGradient; const DisplacementFieldType *const field = this->GetDisplacementField(); typedef typename DisplacementFieldType::PixelType DisplacementPixelType; PointType mappedCenterPoint; this->GetFixedImage()->TransformIndexToPhysicalPoint(index, mappedCenterPoint); for ( unsigned int dim = 0; dim < ImageDimension; dim++ ) { mappedCenterPoint[dim] += it.GetCenterPixel()[dim]; // bounds checking if ( index[dim] < ( FirstIndex[dim] + 1 ) || index[dim] > ( LastIndex[dim] - 2 ) ) { movingGradient[dim] = 0.0; } else { tmpIndex[dim] += 1; DisplacementPixelType displacement = field->GetPixel(tmpIndex); this->GetFixedImage()->TransformIndexToPhysicalPoint(tmpIndex, mappedNeighPoint); for ( unsigned int j = 0; j < ImageDimension; j++ ) { mappedNeighPoint[j] += displacement[j]; } if ( m_MovingImageInterpolator->IsInsideBuffer(mappedNeighPoint) ) { movingGradient[dim] = m_MovingImageInterpolator->Evaluate(mappedNeighPoint); } else { movingGradient[dim] = 0.0; } tmpIndex[dim] -= 2; displacement = field->GetPixel(tmpIndex); this->GetFixedImage()->TransformIndexToPhysicalPoint(tmpIndex, mappedNeighPoint); for ( unsigned int j = 0; j < ImageDimension; j++ ) { mappedNeighPoint[j] += displacement[j]; } if ( m_MovingImageInterpolator->IsInsideBuffer(mappedNeighPoint) ) { movingGradient[dim] -= m_MovingImageInterpolator->Evaluate(mappedNeighPoint); } movingGradient[dim] *= 0.5 / m_FixedImageSpacing[dim]; tmpIndex[dim] += 1; } } double movingValue = 0.0; if ( m_MovingImageInterpolator->IsInsideBuffer(mappedCenterPoint) ) { movingValue = m_MovingImageInterpolator->Evaluate(mappedCenterPoint); } /** * Compute Update. * In the original equation the denominator is defined as * * (g-f)^2 + (moving_grad+fixed_grad)_mag^2 * * However there is a mismatch in units between the two terms. * The units for the second term is intensity^2/mm^2 while the * units for the first term is intensity^2. This mismatch is particularly * problematic when the fixed image does not have unit spacing. * In this implementation, we normalize the first term by a factor K, * such that denominator = (g-f)^2/K + grad_mag^2 * where K = mean square spacing to compensate for the mismatch in units. */ double fixedPlusMovingGradientSquaredMagnitude = 0; for ( unsigned int dim = 0; dim < ImageDimension; dim++ ) { fixedPlusMovingGradientSquaredMagnitude += itk::Math::sqr(fixedGradient[dim] + movingGradient[dim]); } const double speedValue = fixedValue - movingValue; const double denominator = itk::Math::sqr(speedValue) / m_Normalizer + fixedPlusMovingGradientSquaredMagnitude; PixelType update; if ( itk::Math::abs(speedValue) < m_IntensityDifferenceThreshold || denominator < m_DenominatorThreshold ) { update.Fill(0.0); } else { for ( unsigned int j = 0; j < ImageDimension; j++ ) { update[j] = 2 * speedValue * ( fixedGradient[j] + movingGradient[j] ) / denominator; } } // update the squared change value PointType newMappedCenterPoint; bool IsOutsideRegion = 0; for ( unsigned int j = 0; j < ImageDimension; j++ ) { if ( globalData ) { globalData->m_SumOfSquaredChange += itk::Math::sqr(update[j]); newMappedCenterPoint[j] = mappedCenterPoint[j] + update[j]; if ( index[j] < ( FirstIndex[j] + 2 ) || index[j] > ( LastIndex[j] - 3 ) ) { IsOutsideRegion = 1; } } } // update the metric with the latest deformable field if ( globalData ) { // do not consider voxel on the border (2 voxels) as there are often // artefacts // which falsify the metric if ( !IsOutsideRegion ) { double newMovingValue = 0.0; if ( m_MovingImageInterpolator->IsInsideBuffer(newMappedCenterPoint) ) { newMovingValue = m_MovingImageInterpolator->Evaluate(newMappedCenterPoint); } globalData->m_SumOfSquaredDifference += itk::Math::sqr(fixedValue - newMovingValue); globalData->m_NumberOfPixelsProcessed += 1; } } return update; } /** * Update the metric and release the per-thread-global data. */ template< typename TFixedImage, typename TMovingImage, typename TDisplacementField > void SymmetricForcesDemonsRegistrationFunction< TFixedImage, TMovingImage, TDisplacementField > ::ReleaseGlobalDataPointer(void *gd) const { GlobalDataStruct *globalData = (GlobalDataStruct *)gd; m_MetricCalculationLock.Lock(); m_SumOfSquaredDifference += globalData->m_SumOfSquaredDifference; m_NumberOfPixelsProcessed += globalData->m_NumberOfPixelsProcessed; m_SumOfSquaredChange += globalData->m_SumOfSquaredChange; if ( m_NumberOfPixelsProcessed ) { m_Metric = m_SumOfSquaredDifference / static_cast< double >( m_NumberOfPixelsProcessed ); m_RMSChange = std::sqrt( m_SumOfSquaredChange / static_cast< double >( m_NumberOfPixelsProcessed ) ); } m_MetricCalculationLock.Unlock(); delete globalData; } } // end namespace itk #endif