/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkTriangleCell_hxx #define itkTriangleCell_hxx #include "itkTriangleCell.h" #include "vnl/algo/vnl_determinant.h" namespace itk { /** * Standard CellInterface: */ template< typename TCellInterface > void TriangleCell< TCellInterface > ::MakeCopy(CellAutoPointer & cellPointer) const { cellPointer.TakeOwnership(new Self); cellPointer->SetPointIds( this->GetPointIds() ); } /** * Standard CellInterface: * Get the topological dimension of this cell. */ template< typename TCellInterface > unsigned int TriangleCell< TCellInterface > ::GetDimension(void) const { return Self::CellDimension; } /** * Standard CellInterface: * Get the number of points required to define the cell. */ template< typename TCellInterface > unsigned int TriangleCell< TCellInterface > ::GetNumberOfPoints(void) const { return Self::NumberOfPoints; } /** * Standard CellInterface: * Get the number of boundary features of the given dimension. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::CellFeatureCount TriangleCell< TCellInterface > ::GetNumberOfBoundaryFeatures(int dimension) const { switch ( dimension ) { case 0: return GetNumberOfVertices(); case 1: return GetNumberOfEdges(); default: return 0; } } /** * Standard CellInterface: * Get the boundary feature of the given dimension specified by the given * cell feature Id. * The Id can range from 0 to GetNumberOfBoundaryFeatures(dimension)-1. */ template< typename TCellInterface > bool TriangleCell< TCellInterface > ::GetBoundaryFeature(int dimension, CellFeatureIdentifier featureId, CellAutoPointer & cellPointer) { switch ( dimension ) { case 0: { VertexAutoPointer vertexPointer; if ( this->GetVertex(featureId, vertexPointer) ) { TransferAutoPointer(cellPointer, vertexPointer); return true; } break; } case 1: { EdgeAutoPointer edgePointer; if ( this->GetEdge(featureId, edgePointer) ) { TransferAutoPointer(cellPointer, edgePointer); return true; } break; } default: break; //just fall through and return false } cellPointer.Reset(); return false; } /** * Standard CellInterface: * Set the point id list used by the cell. It is assumed that the given * iterator can be incremented and safely de-referenced enough times to * get all the point ids needed by the cell. */ template< typename TCellInterface > void TriangleCell< TCellInterface > ::SetPointIds(PointIdConstIterator first) { PointIdConstIterator ii(first); for ( unsigned int i = 0; i < NumberOfPoints; ++i, ++ii ) { m_PointIds[i] = *ii; } } /** * Standard CellInterface: * Set the point id list used by the cell. It is assumed that the range * of iterators [first, last) contains the correct number of points needed to * define the cell. The position *last is NOT referenced, so it can safely * be one beyond the end of an array or other container. */ template< typename TCellInterface > void TriangleCell< TCellInterface > ::SetPointIds(PointIdConstIterator first, PointIdConstIterator last) { unsigned int localId = 0; PointIdConstIterator ii(first); while ( ( ii != last ) && ( localId < NumberOfPoints ) ) { m_PointIds[localId++] = *ii++; } } /** * Standard CellInterface: * Set an individual point identifier in the cell. */ template< typename TCellInterface > void TriangleCell< TCellInterface > ::SetPointId(int localId, PointIdentifier ptId) { m_PointIds[localId] = ptId; } /** * Standard CellInterface: * Get a begin iterator to the list of point identifiers used by the cell. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointIdIterator TriangleCell< TCellInterface > ::PointIdsBegin(void) { return &m_PointIds[0]; } /** * Standard CellInterface: * Get a const begin iterator to the list of point identifiers used * by the cell. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointIdConstIterator TriangleCell< TCellInterface > ::PointIdsBegin(void) const { return &m_PointIds[0]; } /** * Standard CellInterface: * Get an end iterator to the list of point identifiers used by the cell. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointIdIterator TriangleCell< TCellInterface > ::PointIdsEnd(void) { return &m_PointIds[Self::NumberOfPoints - 1] + 1; } /** * Standard CellInterface: * Get a const end iterator to the list of point identifiers used * by the cell. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointIdConstIterator TriangleCell< TCellInterface > ::PointIdsEnd(void) const { return &m_PointIds[Self::NumberOfPoints - 1] + 1; } /** * Triangle-specific: * Get the number of vertices defining the triangle. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::CellFeatureCount TriangleCell< TCellInterface > ::GetNumberOfVertices(void) const { return Self::NumberOfVertices; } /** * Triangle-specific: * Get the number of edges defined for the triangle. */ template< typename TCellInterface > typename TriangleCell< TCellInterface >::CellFeatureCount TriangleCell< TCellInterface > ::GetNumberOfEdges(void) const { return Self::NumberOfEdges; } /** * Triangle-specific: * Get the vertex specified by the given cell feature Id. * The Id can range from 0 to GetNumberOfVertices()-1. */ template< typename TCellInterface > bool TriangleCell< TCellInterface > ::GetVertex(CellFeatureIdentifier vertexId, VertexAutoPointer & vertexPointer) { VertexType *vert = new VertexType; vert->SetPointId(0, m_PointIds[vertexId]); vertexPointer.TakeOwnership(vert); return true; } /** * Triangle-specific: * Get the edge specified by the given cell feature Id. * The Id can range from 0 to GetNumberOfEdges()-1. */ template< typename TCellInterface > bool TriangleCell< TCellInterface > ::GetEdge(CellFeatureIdentifier edgeId, EdgeAutoPointer & edgePointer) { EdgeType *edge = new EdgeType; for ( unsigned int i = 0; i < EdgeType::NumberOfPoints; ++i ) { edge->SetPointId(i, m_PointIds[m_Edges[edgeId][i]]); } edgePointer.TakeOwnership(edge); return true; } /** Compute distance to finite line. Returns parametric coordinate t * and point location on line. */ template< typename TCellInterface > double TriangleCell< TCellInterface > ::DistanceToLine(PointType x, PointType p1, PointType p2, double & t, CoordRepType *closestPoint) { // convert from CoordRepType * to PointType: PointType temp(closestPoint); // for (unsigned int i = 0; i < PointDimension; i++) // { // temp[i] = closestPoint[i]; // } // Compute the squared distance to the line: const double distance2 = this->DistanceToLine (x, p1, p2, t, temp); // convert from PointType to CoordRepType * : for ( unsigned int j = 0; j < PointDimension; j++ ) { closestPoint[j] = temp[j]; } return distance2; } template< typename TCellInterface > double TriangleCell< TCellInterface > ::DistanceToLine(PointType x, PointType p1, PointType p2, double & t, PointType & closestPoint) { VectorType v21 = p2 - p1; // // Get parametric location // double num(0); double denom(0); for ( unsigned int i = 0; i < PointDimension; i++ ) { num += static_cast< double >( v21[i] * ( x[i] - p1[i] ) ); denom += static_cast< double >( v21[i] * v21[i] ); } // trying to avoid an expensive fabs double tolerance = 1.e-05 * num; if ( tolerance < 0.0 ) { tolerance = -tolerance; } if ( ( -tolerance < denom ) && ( denom < tolerance ) ) //numerically bad! { closestPoint = p1; //arbitrary, point is (numerically) far away } // // If parametric coordinate is within 0<=p<=1, then the point is closest to // the line. Otherwise, it's closest to a point at the end of the line. // else if ( ( t = num / denom ) < 0.0 ) { closestPoint = p1; } else if ( t > 1.0 ) { closestPoint = p2; } else { closestPoint = p1 + v21 * t; } return static_cast< double >( closestPoint.SquaredEuclideanDistanceTo(x) ); } template< typename TCellInterface > typename TriangleCell< TCellInterface >::CoordRepType TriangleCell< TCellInterface >::ComputeArea(PointsContainer *iPoints) { PointType p[3]; for ( unsigned int i = 0; i < NumberOfPoints; ++i ) { p[i] = iPoints->GetElement(m_PointIds[i]); } CoordRepType a = p[1].EuclideanDistanceTo(p[2]); CoordRepType b = p[0].EuclideanDistanceTo(p[2]); CoordRepType c = p[1].EuclideanDistanceTo(p[0]); CoordRepType s = 0.5 * ( a + b + c ); return std::sqrt( s * ( s - a ) * ( s - b ) * ( s - c ) ); } template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointType TriangleCell< TCellInterface >::ComputeBarycenter( CoordRepType *iWeights, PointsContainer *iPoints) { PointType p[3]; CoordRepType sum_weights(0.); unsigned int i(0); for (; i < 3; i++ ) { sum_weights += iWeights[i]; p[i] = iPoints->GetElement(m_PointIds[i]); } PointType oP; if ( sum_weights != 0. ) { oP.Fill(0.); for ( i = 0; i < 3; i++ ) { oP += p[i].GetVectorFromOrigin() * iWeights[i] / sum_weights; } } else { oP = p[0]; } return oP; } template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointType TriangleCell< TCellInterface >::ComputeCenterOfGravity( PointsContainer *iPoints) { std::vector< CoordRepType > weights(3, 1. / 3.); return ComputeBarycenter(& weights[0], iPoints); } template< typename TCellInterface > typename TriangleCell< TCellInterface >::PointType TriangleCell< TCellInterface >::ComputeCircumCenter( PointsContainer *iPoints) { std::vector< CoordRepType > weights(3, 0.); PointType p[3]; unsigned int i; for ( i = 0; i < 3; i++ ) { p[i] = iPoints->GetElement(m_PointIds[i]); } CoordRepType a = p[1].SquaredEuclideanDistanceTo(p[2]); CoordRepType b = p[0].SquaredEuclideanDistanceTo(p[2]); CoordRepType c = p[1].SquaredEuclideanDistanceTo(p[0]); weights[0] = a * ( b + c - a ); weights[1] = b * ( c + a - b ); weights[2] = c * ( a + b - c ); CoordRepType sum_weights = weights[0] + weights[1] + weights[2]; if ( sum_weights != 0. ) { PointType oP; oP.Fill(0.); for ( i = 0; i < 3; i++ ) { oP += p[i].GetVectorFromOrigin() * weights[i] / sum_weights; } return oP; } else { return p[0]; } } /** Evaluate the position of a given point inside the cell */ template< typename TCellInterface > bool TriangleCell< TCellInterface > ::EvaluatePosition(CoordRepType *x, PointsContainer *points, CoordRepType *closestPoint, CoordRepType pcoord[3], double *minDist2, InterpolationWeightType *weights) { unsigned int i; double dist2Point; double dist2Line1; double dist2Line2; PointType closest; PointType closestPoint1; PointType closestPoint2; PointType X(x); if ( !points ) { return false; } // // Get the vertexes of this triangle // PointType pt1 = points->GetElement(m_PointIds[0]); PointType pt2 = points->GetElement(m_PointIds[1]); PointType pt3 = points->GetElement(m_PointIds[2]); // // Compute Vectors along the edges. // These two vectors form a vector base for the 2D space of the triangle cell. // VectorType v12 = pt1 - pt2; VectorType v32 = pt3 - pt2; // // Compute Vectors in the dual vector base inside the 2D space of the triangle // cell. // u12 is orthogonal to v32 // u32 is orthogonal to v12 // const double dotproduct = v12 * v32; VectorType u12 = v12 - v32 * ( dotproduct / v32.GetSquaredNorm() ); VectorType u32 = v32 - v12 * ( dotproduct / v12.GetSquaredNorm() ); // // Add normalizations for making {u12,u32} a vector basis orthonormal to {v12, // v32}. // u12 /= ( u12 * v12 ); u32 /= ( u32 * v32 ); // // Project point to plane, by using the dual vector base // // Compute components of the input point in the 2D // space defined by v12 and v32 // VectorType xo = X - pt2; const double u12p = xo * u12; const double u32p = xo * u32; VectorType x12 = v12 * u12p; VectorType x32 = v32 * u32p; // // The projection of point X in the plane is cp // PointType cp = pt2 + x12 + x32; // // Compute barycentric coordinates in the Triangle // const double b1 = u12p; const double b2 = 1.0 - u12p - u32p; const double b3 = u32p; // // Test if the projected point is inside the cell. // // Zero with epsilon const double zwe = -NumericTraits< double >::min(); // // Since the three barycentric coordinates are interdependent // only three tests should be necessary. That is, we only need // to test against the equations of three lines (half-spaces). // if ( ( b1 >= zwe ) && ( b2 >= zwe ) && ( b3 >= zwe ) ) { // // This is the case when the point is inside the triangle //projection distance if ( closestPoint ) { // Compute the Distance 2 Between Points *minDist2 = 0; for ( i = 0; i < PointDimension; i++ ) { const double val = cp[i] - x[i]; *minDist2 += val * val; closestPoint[i] = cp[i]; } } if ( pcoord ) { pcoord[0] = b1; pcoord[1] = b2; pcoord[2] = b3; } if ( weights ) { weights[0] = b1; weights[1] = b2; weights[2] = b3; } return true; } else { if ( closestPoint ) { double lt; // parameter along the line (not used) if ( b1 < 0.0 && b2 < 0.0 ) { dist2Point = 0; for ( i = 0; i < PointDimension; i++ ) { dist2Point += (x[i] - pt3[i]) * (x[i] - pt3[i]); } dist2Line1 = this->DistanceToLine(x, pt1, pt3, lt, closestPoint1); dist2Line2 = this->DistanceToLine(x, pt3, pt2, lt, closestPoint2); if ( dist2Point < dist2Line1 ) { *minDist2 = dist2Point; closest = pt3; } else { *minDist2 = dist2Line1; closest = closestPoint1; } if ( dist2Line2 < *minDist2 ) { *minDist2 = dist2Line2; closest = closestPoint2; } for ( i = 0; i < PointDimension; i++ ) { closestPoint[i] = closest[i]; } for(; i < 3; i++ ) { closestPoint[i] = 0.; } } else if ( b2 < 0.0 && b3 < 0.0 ) { dist2Point = 0; for ( i = 0; i < PointDimension; i++ ) { dist2Point += (x[i] - pt1[i]) * (x[i] - pt1[i]); } dist2Line1 = this->DistanceToLine(x, pt1, pt3, lt, closestPoint1); dist2Line2 = this->DistanceToLine(x, pt1, pt2, lt, closestPoint2); if ( dist2Point < dist2Line1 ) { *minDist2 = dist2Point; closest = pt1; } else { *minDist2 = dist2Line1; closest = closestPoint1; } if ( dist2Line2 < *minDist2 ) { *minDist2 = dist2Line2; closest = closestPoint2; } for ( i = 0; i < PointDimension; i++ ) { closestPoint[i] = closest[i]; } for(; i < 3; i++ ) { closestPoint[i] = 0.; } } else if ( b1 < 0.0 && b3 < 0.0 ) { dist2Point = 0; for ( i = 0; i < PointDimension; i++ ) { dist2Point += ( x[i] - pt2[i] ) * ( x[i] - pt2[i] ); } dist2Line1 = this->DistanceToLine(x, pt2, pt3, lt, closestPoint1); dist2Line2 = this->DistanceToLine(x, pt1, pt2, lt, closestPoint2); if ( dist2Point < dist2Line1 ) { *minDist2 = dist2Point; closest = pt2; } else { *minDist2 = dist2Line1; closest = closestPoint1; } if ( dist2Line2 < *minDist2 ) { *minDist2 = dist2Line2; closest = closestPoint2; } for ( i = 0; i < PointDimension; i++ ) { closestPoint[i] = closest[i]; } for(; i < 3; i++ ) { closestPoint[i] = 0.; } } else if ( b1 < 0.0 ) { *minDist2 = this->DistanceToLine(x, pt2, pt3, lt, closestPoint); } else if ( b2 < 0.0 ) { *minDist2 = this->DistanceToLine(x, pt1, pt3, lt, closestPoint); } else if ( b3 < 0.0 ) { *minDist2 = this->DistanceToLine(x, pt1, pt2, lt, closestPoint); } } if ( pcoord ) { pcoord[0] = b1; pcoord[1] = b2; pcoord[2] = b3; } //Just fall through to default return false; } return false; //Default case that should never be reached. } } // end namespace itk #endif