/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkVectorCurvatureNDAnisotropicDiffusionFunction_hxx #define itkVectorCurvatureNDAnisotropicDiffusionFunction_hxx #include "itkVectorCurvatureNDAnisotropicDiffusionFunction.h" namespace itk { template< typename TImage > double VectorCurvatureNDAnisotropicDiffusionFunction< TImage > ::m_MIN_NORM = 1.0e-10; template< typename TImage > VectorCurvatureNDAnisotropicDiffusionFunction< TImage > ::VectorCurvatureNDAnisotropicDiffusionFunction(): m_K( 0.0 ) { unsigned int i, j; RadiusType r; for ( i = 0; i < ImageDimension; ++i ) { r[i] = 1; } this->SetRadius(r); // Dummy neighborhood used to set up the slices. Neighborhood< PixelType, ImageDimension > it; it.SetRadius(r); // Slice the neighborhood m_Center = it.Size() / 2; for ( i = 0; i < ImageDimension; ++i ) { m_Stride[i] = it.GetStride(i); } for ( i = 0; i < ImageDimension; ++i ) { x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]); } for ( i = 0; i < ImageDimension; ++i ) { for ( j = 0; j < ImageDimension; ++j ) { // For taking derivatives in the i direction that are offset one // pixel in the j direction. xa_slice[i][j] = std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] ); xd_slice[i][j] = std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] ); } } // Allocate the derivative operator. dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based // fashion dx_op.SetOrder(1); dx_op.CreateDirectional(); } template< typename TImage > typename VectorCurvatureNDAnisotropicDiffusionFunction< TImage >::PixelType VectorCurvatureNDAnisotropicDiffusionFunction< TImage > ::ComputeUpdate(const NeighborhoodType & it, void *, const FloatOffsetType &) { unsigned int i, j, k; double speed; double dx_forward_Cn[ImageDimension][VectorDimension]; double dx_backward_Cn[ImageDimension][VectorDimension]; double propagation_gradient; double grad_mag_sq[VectorDimension]; double grad_mag_sq_d[VectorDimension]; double grad_mag[VectorDimension]; double grad_mag_d[VectorDimension]; double Cx[ImageDimension]; double Cxd[ImageDimension]; const ScalarValueType ScalarValueTypeZero = NumericTraits< ScalarValueType >::ZeroValue(); PixelType dx_forward[ImageDimension]; PixelType dx_backward[ImageDimension]; PixelType dx[ImageDimension]; PixelType dx_aug; PixelType dx_dim; PixelType ans; // Calculate the partial derivatives for each dimension for ( i = 0; i < ImageDimension; i++ ) { // "Half" derivatives dx_forward[i] = it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center); dx_forward[i] = dx_forward[i] * this->m_ScaleCoefficients[i]; dx_backward[i] = it.GetPixel(m_Center) - it.GetPixel(m_Center - m_Stride[i]); dx_backward[i] = dx_backward[i] * this->m_ScaleCoefficients[i]; // Centralized differences dx[i] = m_InnerProduct(x_slice[i], it, dx_op); dx[i] = dx[i] * this->m_ScaleCoefficients[i]; } for ( k = 0; k < VectorDimension; k++ ) { grad_mag_sq[k] = 0.0; grad_mag_sq_d[k] = 0.0; for ( i = 0; i < ImageDimension; i++ ) { // Gradient magnitude approximations grad_mag_sq[k] += dx_forward[i][k] * dx_forward[i][k]; grad_mag_sq_d[k] += dx_backward[i][k] * dx_backward[i][k]; for ( j = 0; j < ImageDimension; j++ ) { if ( j != i ) { dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op); dx_aug = dx_aug * this->m_ScaleCoefficients[j]; dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op); dx_dim = dx_dim * this->m_ScaleCoefficients[j]; grad_mag_sq[k] += 0.25f * ( dx[j][k] + dx_aug[k] ) * ( dx[j][k] + dx_aug[k] ); grad_mag_sq_d[k] += 0.25f * ( dx[j][k] + dx_dim[k] ) * ( dx[j][k] + dx_dim[k] ); } } } grad_mag[k] = std::sqrt(m_MIN_NORM + grad_mag_sq[k]); grad_mag_d[k] = std::sqrt(m_MIN_NORM + grad_mag_sq_d[k]); // this grad mag should depend only on the current k for ( i = 0; i < ImageDimension; i++ ) { dx_forward_Cn[i][k] = dx_forward[i][k] / grad_mag[k]; dx_backward_Cn[i][k] = dx_backward[i][k] / grad_mag_d[k]; } } double grad_mag_sq_tmp = 0.0; double grad_mag_sq_d_tmp = 0.0; for ( k = 0; k < VectorDimension; k++ ) { grad_mag_sq_tmp += grad_mag_sq[k]; grad_mag_sq_d_tmp += grad_mag_sq_d[k]; } // this grad mag should depend on the sum over k's // Conductance Terms for ( i = 0; i < ImageDimension; i++ ) { if ( m_K == 0.0 ) { Cx[i] = 0.0; Cxd[i] = 0.0; } else { Cx[i] = std::exp(grad_mag_sq_tmp / m_K); Cxd[i] = std::exp(grad_mag_sq_d_tmp / m_K); } } for ( k = 0; k < VectorDimension; k++ ) { // First order normalized finite-difference conductance products speed = 0.0; for ( i = 0; i < ImageDimension; i++ ) { dx_forward_Cn[i][k] *= Cx[i]; dx_backward_Cn[i][k] *= Cxd[i]; // Second order conductance-modified curvature speed += ( dx_forward_Cn[i][k] - dx_backward_Cn[i][k] ); } // "Upwind" gradient magnitude term propagation_gradient = 0.0; if ( speed > 0.0 ) { for ( i = 0; i < ImageDimension; i++ ) { propagation_gradient += itk::Math::sqr( std::min(dx_backward[i][k], ScalarValueTypeZero) ) + itk::Math::sqr( std::max(dx_forward[i][k], ScalarValueTypeZero) ); } } else { for ( i = 0; i < ImageDimension; i++ ) { propagation_gradient += itk::Math::sqr( std::max(dx_backward[i][k], ScalarValueTypeZero) ) + itk::Math::sqr( std::min(dx_forward[i][k], ScalarValueTypeZero) ); } } ans[k] = std::sqrt(propagation_gradient) * speed; } return ans; } } // end namespace itk #endif