/*========================================================================= * * Copyright Insight Software Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ #ifndef itkVectorLinearInterpolateImageFunction_hxx #define itkVectorLinearInterpolateImageFunction_hxx #include "itkVectorLinearInterpolateImageFunction.h" #include "itkMath.h" namespace itk { /** * Define the number of neighbors */ template< typename TInputImage, typename TCoordRep > const unsigned long VectorLinearInterpolateImageFunction< TInputImage, TCoordRep > ::m_Neighbors = 1 << TInputImage::ImageDimension; /** * Constructor */ template< typename TInputImage, typename TCoordRep > VectorLinearInterpolateImageFunction< TInputImage, TCoordRep > ::VectorLinearInterpolateImageFunction() {} /** * PrintSelf */ template< typename TInputImage, typename TCoordRep > void VectorLinearInterpolateImageFunction< TInputImage, TCoordRep > ::PrintSelf(std::ostream & os, Indent indent) const { this->Superclass::PrintSelf(os, indent); } /** * Evaluate at image index position */ template< typename TInputImage, typename TCoordRep > typename VectorLinearInterpolateImageFunction< TInputImage, TCoordRep > ::OutputType VectorLinearInterpolateImageFunction< TInputImage, TCoordRep > ::EvaluateAtContinuousIndex( const ContinuousIndexType & index) const { /** * Compute base index = closet index below point * Compute distance from point to base index */ IndexType baseIndex; InternalComputationType distance[ImageDimension]; const TInputImage * const inputImgPtr=this->GetInputImage(); for (unsigned int dim = 0; dim < ImageDimension; ++dim ) { baseIndex[dim] = Math::Floor< IndexValueType >(index[dim]); distance[dim] = index[dim] - static_cast< InternalComputationType >( baseIndex[dim] ); } /** * Interpolated value is the weighted sum of each of the surrounding * neighbors. The weight for each neighbor is the fraction overlap * of the neighbor pixel with respect to a pixel centered on point. */ OutputType output; output.Fill(0.0); typedef typename NumericTraits< PixelType >::ScalarRealType ScalarRealType; ScalarRealType totalOverlap = NumericTraits< ScalarRealType >::ZeroValue(); for ( unsigned int counter = 0; counter < m_Neighbors; ++counter ) { InternalComputationType overlap = 1.0; // fraction overlap unsigned int upper = counter; // each bit indicates upper/lower neighbour IndexType neighIndex; // get neighbor index and overlap fraction for ( unsigned int dim = 0; dim < ImageDimension; ++dim ) { if ( upper & 1 ) { neighIndex[dim] = baseIndex[dim] + 1; // Take care of the case where the pixel is just // in the outer upper boundary of the image grid. if ( neighIndex[dim] > this->m_EndIndex[dim] ) { neighIndex[dim] = this->m_EndIndex[dim]; } overlap *= distance[dim]; } else { neighIndex[dim] = baseIndex[dim]; // Take care of the case where the pixel is just // in the outer lower boundary of the image grid. if ( neighIndex[dim] < this->m_StartIndex[dim] ) { neighIndex[dim] = this->m_StartIndex[dim]; } overlap *= 1.0 - distance[dim]; } upper >>= 1; } // get neighbor value only if overlap is not zero if ( overlap ) { const PixelType & input = inputImgPtr->GetPixel(neighIndex); for ( unsigned int k = 0; k < Dimension; ++k ) { output[k] += overlap * static_cast< InternalComputationType >( input[k] ); } totalOverlap += overlap; } if ( totalOverlap == 1.0 ) { // finished break; } } return ( output ); } } // end namespace itk #endif