/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbComplexMomentsImageFunction_hxx #define otbComplexMomentsImageFunction_hxx #include "otbComplexMomentsImageFunction.h" #include "itkConstNeighborhoodIterator.h" #include "itkNumericTraits.h" namespace otb { /** * Constructor */ template ComplexMomentsImageFunction::ComplexMomentsImageFunction() { m_NeighborhoodRadius = 1; m_Pmax = 4; m_Qmax = 4; } template void ComplexMomentsImageFunction::PrintSelf(std::ostream& os, itk::Indent indent) const { this->Superclass::PrintSelf(os, indent); os << indent << " p indice maximum value : " << m_Pmax << std::endl; os << indent << " q indice maximum value : " << m_Qmax << std::endl; os << indent << " Neighborhood radius value : " << m_NeighborhoodRadius << std::endl; } template typename ComplexMomentsImageFunction::OutputType ComplexMomentsImageFunction::EvaluateAtIndex(const IndexType& index) const { // Build moments vector OutputType moments; moments.resize(m_Pmax + 1); // Initialize moments for (unsigned int p = 0; p <= m_Pmax; p++) { moments[p].resize(m_Qmax + 1); for (unsigned int q = 0; q <= m_Qmax; q++) { moments[p][q] = ScalarComplexType(0.0, 0.0); } } // Check for input image if (!this->GetInputImage()) { return moments; } // Check for out of buffer if (!this->IsInsideBuffer(index)) { return moments; } // Create an N-d neighborhood kernel, using a zeroflux boundary condition typename InputImageType::SizeType kernelSize; kernelSize.Fill(m_NeighborhoodRadius); itk::ConstNeighborhoodIterator it(kernelSize, this->GetInputImage(), this->GetInputImage()->GetBufferedRegion()); // Set the iterator at the desired location it.SetLocation(index); // Walk the neighborhood const unsigned int size = it.Size(); for (unsigned int i = 0; i < size; ++i) { // Retrieve value, and centered-reduced position ScalarRealType value = static_cast(it.GetPixel(i)); ScalarRealType x = static_cast(it.GetOffset(i)[0]) / (2 * m_NeighborhoodRadius + 1); ScalarRealType y = static_cast(it.GetOffset(i)[1]) / (2 * m_NeighborhoodRadius + 1); // Build complex value ScalarComplexType xpy(x, y), xqy(x, -y); // Update cumulants for (unsigned int p = 0; p <= m_Pmax; p++) { for (unsigned int q = 0; q <= m_Qmax; q++) { ScalarComplexType pow1(1, 0); ScalarComplexType pow2(1, 0); if (p != 0 || x != 0 || y != 0) { pow1 = std::pow(xpy, static_cast(p)); } if (q != 0 || x != 0 || y != 0) { pow2 = std::pow(xqy, static_cast(q)); } moments[p][q] += pow1 * pow2 * value; } } } // Normalisation for (int p = m_Pmax; p >= 0; p--) { for (int q = m_Qmax; q >= 0; q--) { moments[p][q] /= moments[0][0]; } } // Return result return moments; } } // namespace otb #endif