/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbCzihoSOMLearningBehaviorFunctor_h #define otbCzihoSOMLearningBehaviorFunctor_h #include "itkSize.h" #include "otbMath.h" namespace otb { namespace Functor { /** \class CzihoSOMLearningBehaviorFunctor * \brief Beta behavior over SOM training phase * * This class implements an evolution of the \f$ \beta \f$ weightening * coefficient over the SOM training. It is issued from A. Cziho's PhD: * "Compression d'images et analyse de contenu par quantification vectorielle" * PhD dissertation, University of Rennes I, Rennes, France. May 5th, 1999. * * Its behavior is decomposed into two steps depending on the number of iterations: * \f[ \beta = \begin{cases} \beta_0 \left( 1 - \frac{t}{t_0} \right) & \textrm{ if } t < t_0 \\ \beta_{\textrm{end}} \left( 1- \frac{t-t_O}{t_{\textrm{end}}-t_0} \right) & \textrm{ if } t_0 \leqslant t < t_{\textrm{end}} \end{cases} \f] * where \f$ t_0 \f$ stands for IterationThreshold. * * CzihoSOMLearningBehaviorFunctor uses some parameters of the SOM class such as: * BetaInit, BetaEnd, NumberOfIterations, but also NeighborhoodSizeInit which may be * (surprisingly) required for the IterationThreshold. * * The functor function uses \code NumberOfIterations \endcode, \code BetaInit \endcode, \code BetaEnd \endcode parameters, that is * why it is necessary to call a specific method for \code IterationThreshold \endcode initialization. * * \sa SOM * * \ingroup OTBSOM */ class CzihoSOMLearningBehaviorFunctor { public: /** Empty constructor / descructor */ CzihoSOMLearningBehaviorFunctor() { m_IterationThreshold = 0; } virtual ~CzihoSOMLearningBehaviorFunctor() { } /** Accessors */ unsigned int GetIterationThreshold() { return this->m_IterationThreshold; } template void SetIterationThreshold(const itk::Size& sizeInit, unsigned int iterMax) { double V0 = static_cast(sizeInit[0]); for (unsigned int i = 1; i < VDimension; ++i) { if (V0 < static_cast(sizeInit[i])) V0 = static_cast(sizeInit[i]); } m_IterationThreshold = static_cast(static_cast(iterMax) * (1.0 - 1.0 / ::std::sqrt(V0))); } /** Functor */ virtual double operator()(unsigned int currentIteration, unsigned int numberOfIterations, double betaInit, double betaEnd) const { if (currentIteration < m_IterationThreshold) { return betaInit * (1.0 - static_cast(currentIteration) / static_cast(numberOfIterations)); } else { return betaEnd * (1.0 - static_cast(currentIteration - m_IterationThreshold) / static_cast(numberOfIterations - m_IterationThreshold)); } } private: unsigned int m_IterationThreshold; }; // end of class CzihoSOMLearningBehaviorFunctor } // end namespace Functor } // end namespace otb #endif