/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbDimensionalityReductionTrainPCA_hxx #define otbDimensionalityReductionTrainPCA_hxx #include "otbTrainDimensionalityReductionApplicationBase.h" #include "otbPCAModel.h" namespace otb { namespace Wrapper { template void TrainDimensionalityReductionApplicationBase::InitPCAParams() { AddChoice("algorithm.pca", "Shark PCA"); SetParameterDescription("algorithm.pca", "This group of parameters allows setting Shark PCA parameters. "); // Output Dimension AddParameter(ParameterType_Int, "algorithm.pca.dim", "Dimension of the output of the pca transformation"); SetParameterInt("algorithm.pca.dim", 10, false); SetParameterDescription("algorithm.pca.dim", "Dimension of the output of the pca transformation."); } template void TrainDimensionalityReductionApplicationBase::TrainPCA(typename ListSampleType::Pointer trainingListSample, std::string modelPath) { typedef otb::PCAModel PCAModelType; typename PCAModelType::Pointer dimredTrainer = PCAModelType::New(); dimredTrainer->SetDimension(GetParameterInt("algorithm.pca.dim")); dimredTrainer->SetInputListSample(trainingListSample); dimredTrainer->SetWriteEigenvectors(true); dimredTrainer->Train(); dimredTrainer->Save(modelPath); } } // end namespace wrapper } // end namespace otb #endif