/* * Copyright (C) 1999-2011 Insight Software Consortium * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbEigenvalueLikelihoodMaximisation_hxx #define otbEigenvalueLikelihoodMaximisation_hxx #include "otbEigenvalueLikelihoodMaximisation.h" #include namespace otb { template EigenvalueLikelihoodMaximisation::EigenvalueLikelihoodMaximisation() : m_NumberOfPixels(0), m_NumberOfEndmembers(0) { } template void EigenvalueLikelihoodMaximisation::Compute() { // TODO check size const unsigned int nbBands = m_Covariance.rows(); // Compute diagonalisation of covariance and correlation vnl_symmetric_eigensystem eigenK(m_Covariance); VectorType eigenCovariance = eigenK.D.diagonal(); std::sort(eigenCovariance.begin(), eigenCovariance.end()); eigenCovariance.flip(); vnl_symmetric_eigensystem eigenR(m_Correlation); VectorType eigenCorrelation = eigenR.D.diagonal(); std::sort(eigenCorrelation.begin(), eigenCorrelation.end()); eigenCorrelation.flip(); // Compute likelihood log m_Likelihood.set_size(nbBands); const double coef = 2.0 / m_NumberOfPixels; for (unsigned int i = 0; i < nbBands; ++i) { const unsigned int nl = nbBands - i; VectorType sigma(nl), t(nl); for (unsigned int j = 0; j < nl; ++j) { PrecisionType r = eigenCorrelation[j + i]; PrecisionType k = eigenCovariance[j + i]; sigma[j] = coef * (r * r + k * k); // std::cout << "sigma[" << j << "]=" << sigma[j] << std::endl; t[j] = (r - k) * (r - k) / sigma[j]; // std::cout << "t[" << j <<"]=" << t[j] << std::endl; sigma[j] = std::log(sigma[j]); } m_Likelihood(i) = -0.5 * t.sum() - 0.5 * sigma.sum(); } // Extract first local maximum // double max = m_Likelihood[0]; unsigned int iMax = 0; for (unsigned int i = 1; i < m_Likelihood.size() - 1; ++i) { if ((m_Likelihood[i] > m_Likelihood[i - 1]) && (m_Likelihood[i] > m_Likelihood[i + 1])) { // max = m_Likelihood[i]; iMax = i; break; } } m_NumberOfEndmembers = iMax; } template void EigenvalueLikelihoodMaximisation::PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); os << indent << "Covariance: " << m_Covariance << std::endl; os << indent << "Correlation: " << m_Correlation << std::endl; os << indent << "NumberOfEndmembers: " << m_NumberOfEndmembers << std::endl; os << indent << "Likelihood: " << m_Likelihood << std::endl; } } // end namespace otb #endif