/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbLibSVMMachineLearningModel_h #define otbLibSVMMachineLearningModel_h #include "itkLightObject.h" #include "itkFixedArray.h" #include "otbMachineLearningModel.h" #include "svm.h" namespace otb { template class ITK_EXPORT LibSVMMachineLearningModel : public MachineLearningModel { public: /** Standard class typedefs. */ typedef LibSVMMachineLearningModel Self; typedef MachineLearningModel Superclass; typedef itk::SmartPointer Pointer; typedef itk::SmartPointer ConstPointer; typedef typename Superclass::InputValueType InputValueType; typedef typename Superclass::InputSampleType InputSampleType; typedef typename Superclass::InputListSampleType InputListSampleType; typedef typename Superclass::TargetValueType TargetValueType; typedef typename Superclass::TargetSampleType TargetSampleType; typedef typename Superclass::TargetListSampleType TargetListSampleType; typedef typename Superclass::ConfidenceValueType ConfidenceValueType; typedef typename Superclass::ProbaSampleType ProbaSampleType; /** enum to choose the way confidence is computed * CM_INDEX : compute the difference between highest and second highest probability * CM_PROBA : returns probabilities for all classes * The given pointer needs to store 'nbClass' values * This mode requires that ConfidenceValueType is double * CM_HYPER : returns hyperplanes distances* * The given pointer needs to store 'nbClass * (nbClass-1) / 2' values * This mode requires that ConfidenceValueType is double */ typedef enum { CM_INDEX, CM_PROBA, CM_HYPER } ConfidenceMode; /** Run-time type information (and related methods). */ itkNewMacro(Self); itkTypeMacro(SVMMachineLearningModel, MachineLearningModel); /** Train the machine learning model */ void Train() override; /** Save the model to file */ void Save(const std::string& filename, const std::string& name = "") override; /** Load the model from file */ void Load(const std::string& filename, const std::string& name = "") override; /**\name Classification model file compatibility tests */ //@{ /** Is the input model file readable and compatible with the corresponding classifier ? */ bool CanReadFile(const std::string&) override; /** Is the input model file writable and compatible with the corresponding classifier ? */ bool CanWriteFile(const std::string&) override; //@} #define otbSetSVMParameterMacro(name, alias, type) \ void Set##name(const type _arg) \ { \ itkDebugMacro("setting " #name " to " << _arg); \ if (this->m_Parameters.alias != _arg) \ { \ this->m_Parameters.alias = _arg; \ this->Modified(); \ } \ } /** Set the SVM type to C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR */ otbSetSVMParameterMacro(SVMType, svm_type, int); /** Get the SVM type (C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR) */ int GetSVMType(void) const { return m_Parameters.svm_type; } /** Set the kernel type to LINEAR, POLY, RBF, SIGMOID linear: u'*v polynomial: (gamma*u'*v + coef0)^degree radial basis function: exp(-gamma*|u-v|^2) sigmoid: tanh(gamma*u'*v + coef0)*/ otbSetSVMParameterMacro(KernelType, kernel_type, int); /** Get the kernel type */ int GetKernelType(void) const { return m_Parameters.kernel_type; } /** Set the degree of the polynomial kernel */ otbSetSVMParameterMacro(PolynomialKernelDegree, degree, int); /** Get the degree of the polynomial kernel */ int GetPolynomialKernelDegree(void) const { return m_Parameters.degree; } /** Set the gamma parameter for poly/rbf/sigmoid kernels */ otbSetSVMParameterMacro(KernelGamma, gamma, double); /** Get the gamma parameter for poly/rbf/sigmoid kernels */ double GetKernelGamma(void) const { return m_Parameters.gamma; } /** Set the coef0 parameter for poly/sigmoid kernels */ otbSetSVMParameterMacro(KernelCoef0, coef0, double); /** Get the coef0 parameter for poly/sigmoid kernels */ double GetKernelCoef0(void) const { return m_Parameters.coef0; } /** Set the C parameter for the training for C_SVC, EPSILON_SVR and C_SVR */ otbSetSVMParameterMacro(C, C, double); /** Get the C parameter for the training for C_SVC, EPSILON_SVR and NU_SVR */ double GetC(void) const { return m_Parameters.C; } itkSetMacro(ParameterOptimization, bool); itkGetMacro(ParameterOptimization, bool); /** Do probability estimates */ void SetDoProbabilityEstimates(bool prob) { m_Parameters.probability = static_cast(prob); } /** Get Do probability estimates boolean */ bool GetDoProbabilityEstimates(void) const { return static_cast(m_Parameters.probability); } /** Test if the model has probabilities */ bool HasProbabilities(void) const; /** Set the tolerance for the stopping criterion for the training*/ otbSetSVMParameterMacro(Epsilon, eps, double); /** Get the tolerance for the stopping criterion for the training*/ double GetEpsilon(void) const { return m_Parameters.eps; } /** Set the value of p for EPSILON_SVR */ otbSetSVMParameterMacro(P, p, double); /** Get the value of p for EPSILON_SVR */ double GetP(void) const { return m_Parameters.p; } /** Set the Nu parameter for the training */ otbSetSVMParameterMacro(Nu, nu, double); /** Set the Nu parameter for the training */ double GetNu(void) const { return m_Parameters.nu; } #undef otbSetSVMParameterMacro /** Use the shrinking heuristics for the training */ void DoShrinking(bool s) { m_Parameters.shrinking = static_cast(s); this->Modified(); } /** Get Use the shrinking heuristics for the training boolea */ bool GetDoShrinking(void) const { return static_cast(m_Parameters.shrinking); } /** Set the cache size in MB for the training */ void SetCacheSize(int cSize) { m_Parameters.cache_size = static_cast(cSize); this->Modified(); } /** Get the cache size in MB for the training */ int GetCacheSize(void) const { return static_cast(m_Parameters.cache_size); } itkSetMacro(CVFolders, unsigned int); itkGetMacro(CVFolders, unsigned int); itkGetMacro(InitialCrossValidationAccuracy, double); itkGetMacro(FinalCrossValidationAccuracy, double); itkSetMacro(CoarseOptimizationNumberOfSteps, unsigned int); itkGetMacro(CoarseOptimizationNumberOfSteps, unsigned int); itkSetMacro(FineOptimizationNumberOfSteps, unsigned int); itkGetMacro(FineOptimizationNumberOfSteps, unsigned int); void SetConfidenceMode(unsigned int mode) { if (m_ConfidenceMode != static_cast(mode)) { m_ConfidenceMode = static_cast(mode); this->m_ConfidenceIndex = this->HasProbabilities(); this->Modified(); } } itkGetMacro(ConfidenceMode, unsigned int); unsigned int GetNumberOfKernelParameters(); double CrossValidation(void); /** Return number of support vectors */ unsigned int GetNumberOfSupportVectors(void) const { if (m_Model) return m_Model->l; return 0; } unsigned int GetNumberOfClasses(void) const { if (m_Model) return m_Model->nr_class; return 0; } protected: /** Constructor */ LibSVMMachineLearningModel(); /** Destructor */ ~LibSVMMachineLearningModel() override; /** Predict values using the model */ TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override; /** PrintSelf method */ void PrintSelf(std::ostream& os, itk::Indent indent) const override; private: LibSVMMachineLearningModel(const Self&) = delete; void operator=(const Self&) = delete; void BuildProblem(void); void ConsistencyCheck(void); void DeleteProblem(void); void DeleteModel(void); void OptimizeParameters(void); /** Container to hold the SVM model itself */ struct svm_model* m_Model; /** Structure that stores training vectors */ struct svm_problem m_Problem; /** Container of the SVM parameters */ struct svm_parameter m_Parameters; /** Do parameters optimization, default : false */ bool m_ParameterOptimization; /** Number of Cross Validation folders*/ unsigned int m_CVFolders; /** Initial cross validation accuracy */ double m_InitialCrossValidationAccuracy; /** Final cross validationa accuracy */ double m_FinalCrossValidationAccuracy; /** Number of steps for the coarse search */ unsigned int m_CoarseOptimizationNumberOfSteps; /** Number of steps for the fine search */ unsigned int m_FineOptimizationNumberOfSteps; /** Output mode for confidence index (see enum ) */ ConfidenceMode m_ConfidenceMode; /** Temporary array to store cross-validation results */ std::vector m_TmpTarget; }; } // end namespace otb #ifndef OTB_MANUAL_INSTANTIATION #include "otbLibSVMMachineLearningModel.hxx" #endif #endif