/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbMRFEnergyGaussianClassification_h #define otbMRFEnergyGaussianClassification_h #include "otbMRFEnergy.h" #include "otbMath.h" namespace otb { /** * \class MRFEnergyGaussianClassification * \brief This is the implementation of the Gaussian model for Markov classification. * * This is the implementation of the Gaussian Energy model for Markov classification, to be used for * the fidelity term for classification. Energy is: * \f[ U(x_s / y_s) = \frac{(y_s+\mu_{x_s})^2}{2\sigma^2_{x_s}}+\log{\sqrt{2\pi}\sigma_{x_s}} \f] * with * - \f$ x_s \f$ the label on site s * - \f$ y_s \f$ the value on the reference image * - \f$ \mu_{x_s} \f$ and \f$ \sigma^2_{x_s} \f$ the mean and variance of label \f$ x_s \f$ * * This class is meant to be used in the MRF framework with the otb::MarkovRandomFieldFilter * * \ingroup Markov * * \ingroup OTBMarkov */ template class ITK_EXPORT MRFEnergyGaussianClassification : public MRFEnergy { public: typedef MRFEnergyGaussianClassification Self; typedef MRFEnergy Superclass; typedef itk::SmartPointer Pointer; typedef itk::SmartPointer ConstPointer; typedef TInput1 InputImageType; typedef TInput2 LabelledImageType; typedef typename InputImageType::PixelType InputImagePixelType; typedef typename LabelledImageType::PixelType LabelledImagePixelType; typedef itk::Array ParametersType; itkNewMacro(Self); itkTypeMacro(MRFEnergyGaussianClassification, MRFEnergy); void SetNumberOfParameters(const unsigned int nParameters) override { Superclass::SetNumberOfParameters(nParameters); this->m_Parameters.SetSize(nParameters); this->Modified(); } double GetSingleValue(const InputImagePixelType& value1, const LabelledImagePixelType& value2) override { if ((unsigned int)value2 >= this->GetNumberOfParameters() / 2) { itkExceptionMacro(<< "Number of parameters does not correspond to number of classes"); } double val1 = static_cast(value1); double result = vnl_math_sqr(val1 - this->m_Parameters[2 * static_cast(value2)]) / (2 * vnl_math_sqr(this->m_Parameters[2 * static_cast(value2) + 1])) + std::log(std::sqrt(CONST_2PI) * this->m_Parameters[2 * static_cast(value2) + 1]); return static_cast(result); } protected: // The constructor and destructor. MRFEnergyGaussianClassification(){}; ~MRFEnergyGaussianClassification() override { } }; } #endif