/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbMRFOptimizerMetropolis_h #define otbMRFOptimizerMetropolis_h #include "otbMRFOptimizer.h" #include "otbMath.h" #include "itkNumericTraits.h" #include "itkMersenneTwisterRandomVariateGenerator.h" namespace otb { /** * \class MRFOptimizerMetropolis * \brief This is the optimizer class implementing the Metropolis algorithm * * This is one optimizer to be used in the MRF framework. This optimizer * follows the metropolis algorithm to accept of reject the value proposed by the sampler. * * The MRFOptimizerMetropolis has one parameter corresponding to the temperature T used * to accept or reject proposed values. The proposed value is accepted with a probability: * * \f[ e^{\frac{-\Delta E}{T}} \f] * * * This class is meant to be used in the MRF framework with the otb::MarkovRandomFieldFilter * * \ingroup Markov * * \ingroup OTBMarkov */ class ITK_EXPORT MRFOptimizerMetropolis : public MRFOptimizer { public: typedef MRFOptimizerMetropolis Self; typedef MRFOptimizer Superclass; typedef itk::SmartPointer Pointer; typedef itk::SmartPointer ConstPointer; typedef Superclass::ParametersType ParametersType; typedef itk::Statistics::MersenneTwisterRandomVariateGenerator RandomGeneratorType; itkNewMacro(Self); itkTypeMacro(MRFOptimizerMetropolis, MRFOptimizer); /** Set parameter to a one array filled with paramVal.*/ void SetSingleParameter(double parameterVal) { this->m_Parameters.SetSize(1); this->m_Parameters.Fill(parameterVal); this->Modified(); } inline bool Compute(double deltaEnergy) override { if (deltaEnergy < 0) { return true; } if (deltaEnergy == 0) { return false; } else { double proba = std::exp(-(deltaEnergy) / this->m_Parameters[0]); if ((m_Generator->GetIntegerVariate() % 10000) < proba * 10000) { return true; } } return false; } /** Methods to cancel random effects.*/ void InitializeSeed(int seed) { m_Generator->SetSeed(seed); } void InitializeSeed() { m_Generator->SetSeed(); } protected: MRFOptimizerMetropolis() { this->m_NumberOfParameters = 1; this->m_Parameters.SetSize(1); this->m_Parameters[0] = 1.0; m_Generator = RandomGeneratorType::GetInstance(); m_Generator->SetSeed(); } ~MRFOptimizerMetropolis() override { } RandomGeneratorType::Pointer m_Generator; }; } #endif