/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbMRFSamplerMAP_h #define otbMRFSamplerMAP_h #include "otbMRFSampler.h" namespace otb { /** * \class MRFSamplerMAP * \brief This is the base class for sampler methods used in the MRF framework. * * This is one sampler to be used int he MRF framework. This sampler select the * value which maximizes the apriori probability (minimum energy). * * * This class is meant to be used in the MRF framework with the otb::MarkovRandomFieldFilter * * \ingroup Markov * * \ingroup OTBMarkov */ template class ITK_EXPORT MRFSamplerMAP : public MRFSampler { public: typedef MRFSamplerMAP Self; typedef MRFSampler Superclass; typedef itk::SmartPointer Pointer; typedef itk::SmartPointer ConstPointer; typedef typename Superclass::InputImageNeighborhoodIterator InputImageNeighborhoodIterator; typedef typename Superclass::LabelledImageNeighborhoodIterator LabelledImageNeighborhoodIterator; typedef typename Superclass::LabelledImagePixelType LabelledImagePixelType; typedef typename Superclass::InputImagePixelType InputImagePixelType; typedef typename Superclass::EnergyFidelityType EnergyFidelityType; typedef typename Superclass::EnergyRegularizationType EnergyRegularizationType; typedef typename Superclass::EnergyFidelityPointer EnergyFidelityPointer; typedef typename Superclass::EnergyRegularizationPointer EnergyRegularizationPointer; itkNewMacro(Self); itkTypeMacro(MRFSamplerMAP, MRFSampler); inline int Compute(const InputImageNeighborhoodIterator& itData, const LabelledImageNeighborhoodIterator& itRegul) override { if (this->m_NumberOfClasses == 0) { itkExceptionMacro(<< "NumberOfClasse has to be greater than 0."); } this->m_EnergyBefore = this->m_EnergyFidelity->GetValue(itData, itRegul.GetCenterPixel()); this->m_EnergyBefore += this->m_Lambda * this->m_EnergyRegularization->GetValue(itRegul, itRegul.GetCenterPixel()); // Try all possible value (how to be generic ?) this->m_EnergyAfter = this->m_EnergyBefore; // default values to current one this->m_Value = itRegul.GetCenterPixel(); LabelledImagePixelType valueCurrent = 0; while (valueCurrent < static_cast(this->GetNumberOfClasses()) && valueCurrent != itk::NumericTraits::max()) { this->m_EnergyCurrent = this->m_EnergyFidelity->GetValue(itData, valueCurrent); this->m_EnergyCurrent += this->m_Lambda * this->m_EnergyRegularization->GetValue(itRegul, valueCurrent); if (this->m_EnergyCurrent < this->m_EnergyAfter) { this->m_EnergyAfter = this->m_EnergyCurrent; this->m_Value = valueCurrent; } valueCurrent++; } this->m_DeltaEnergy = this->m_EnergyAfter - this->m_EnergyBefore; return 0; } protected: // The constructor and destructor. MRFSamplerMAP(){}; ~MRFSamplerMAP() override { } }; } #endif