/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbSOMWithMissingValue_hxx #define otbSOMWithMissingValue_hxx #include "otbSOMWithMissingValue.h" #include "itkNumericTraits.h" #include "itkNeighborhoodIterator.h" #include "otbMacro.h" namespace otb { template SOMWithMissingValue::SOMWithMissingValue(void) { } template SOMWithMissingValue::~SOMWithMissingValue(void) { } /** * Update the output map with a new sample by including the case when some * components of this new sample may be missing. * \param sample The new sample to learn, * \param beta The learning coefficient, * \param radius The radius of the nieghbourhood. */ template void SOMWithMissingValue::UpdateMap(const NeuronType& sample, double beta, SizeType& radius) { // output map pointer MapPointerType map = this->GetOutput(0); // winner index in the map IndexType position = map->GetWinner(sample); NeuronType winner = map->GetPixel(position); // Local neighborhood definition typedef typename MapType::Superclass ImageMapType; typedef itk::NeighborhoodIterator NeighborhoodIteratorType; typename MapType::RegionType mapRegion = map->GetLargestPossibleRegion(); NeighborhoodIteratorType it(radius, map, mapRegion); // Here, the periodic update is achieved 'by hand' since // PeriodicBoundaryCondition does not allow modifying // VectorImage contents SizeType mapSize = mapRegion.GetSize(); IndexType positionToUpdate; // Iterate over the neighborhood of the winner neuron it.SetLocation(position); for (unsigned int i = 0; i < it.Size(); ++i) { typename NeighborhoodIteratorType::OffsetType offset = it.GetOffset(i); // The neighborhood is of elliptic shape double theDistance = itk::NumericTraits::Zero; for (unsigned int j = 0; j < MapType::ImageDimension; ++j) theDistance += pow(static_cast(offset[j]), 2.0) / pow(static_cast(radius[j]), 2.0); if (theDistance <= 1.0) { for (unsigned int j = 0; j < MapType::ImageDimension; ++j) { int pos = offset[j] + position[j]; positionToUpdate[j] = (pos >= 0) ? pos % mapSize[j] : (mapSize[j] - ((-pos) % mapSize[j])) % mapSize[j]; } NeuronType tempNeuron = it.GetPixel(i); NeuronType newNeuron(tempNeuron); double tempBeta = beta / (1.0 + theDistance); for (unsigned int j = 0; j < newNeuron.Size(); ++j) { if (!DistanceType::IsMissingValue(sample[j])) newNeuron[j] += static_cast((sample[j] - tempNeuron[j]) * tempBeta); } map->SetPixel(positionToUpdate, newNeuron); } } } template void SOMWithMissingValue::PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); } // end PrintSelf } // end iof namespace otb #endif