/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbSVMMachineLearningModel_h #define otbSVMMachineLearningModel_h #include "otbRequiresOpenCVCheck.h" #include "itkLightObject.h" #include "itkFixedArray.h" #include "otbMachineLearningModel.h" #ifdef OTB_OPENCV_3 #include "otbOpenCVUtils.h" #else class CvSVM; #endif namespace otb { /** * \brief OpenCV implementation of SVM algorithm. * * This machine learning model uses the OpenCV implementation of the * SVM algorithm. Since this implementation is buggy in the linear * case, we recommend users to use the LibSVM implementation instead, * through the otb::LibSVMMachineLearningModel. */ template class ITK_EXPORT SVMMachineLearningModel : public MachineLearningModel { public: /** Standard class typedefs. */ typedef SVMMachineLearningModel Self; typedef MachineLearningModel Superclass; typedef itk::SmartPointer Pointer; typedef itk::SmartPointer ConstPointer; typedef typename Superclass::InputValueType InputValueType; typedef typename Superclass::InputSampleType InputSampleType; typedef typename Superclass::InputListSampleType InputListSampleType; typedef typename Superclass::TargetValueType TargetValueType; typedef typename Superclass::TargetSampleType TargetSampleType; typedef typename Superclass::TargetListSampleType TargetListSampleType; typedef typename Superclass::ConfidenceValueType ConfidenceValueType; typedef typename Superclass::ProbaSampleType ProbaSampleType; /** Run-time type information (and related methods). */ itkNewMacro(Self); itkTypeMacro(SVMMachineLearningModel, MachineLearningModel); /** Train the machine learning model */ void Train() override; /** Save the model to file */ void Save(const std::string& filename, const std::string& name = "") override; /** Load the model from file */ void Load(const std::string& filename, const std::string& name = "") override; /**\name Classification model file compatibility tests */ //@{ /** Is the input model file readable and compatible with the corresponding classifier ? */ bool CanReadFile(const std::string&) override; /** Is the input model file writable and compatible with the corresponding classifier ? */ bool CanWriteFile(const std::string&) override; //@} // Setters/Getters to SVM model itkGetMacro(SVMType, int); itkSetMacro(SVMType, int); itkGetMacro(KernelType, int); itkSetMacro(KernelType, int); // CV_TERMCRIT_ITER or CV_TERMCRIT_EPS itkGetMacro(TermCriteriaType, int); itkSetMacro(TermCriteriaType, int); itkGetMacro(MaxIter, int); itkSetMacro(MaxIter, int); itkGetMacro(Epsilon, double); itkSetMacro(Epsilon, double); // for poly itkGetMacro(Degree, double); itkSetMacro(Degree, double); itkGetMacro(OutputDegree, double); // for poly/rbf/sigmoid itkGetMacro(Gamma, double); itkSetMacro(Gamma, double); itkGetMacro(OutputGamma, double); // for poly/sigmoid itkGetMacro(Coef0, double); itkSetMacro(Coef0, double); itkGetMacro(OutputCoef0, double); // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR itkGetMacro(C, double); itkSetMacro(C, double); itkGetMacro(OutputC, double); // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR itkGetMacro(Nu, double); itkSetMacro(Nu, double); itkGetMacro(OutputNu, double); // for CV_SVM_EPS_SVR itkGetMacro(P, double); itkSetMacro(P, double); itkGetMacro(OutputP, double); itkGetMacro(ParameterOptimization, bool); itkSetMacro(ParameterOptimization, bool); protected: /** Constructor */ SVMMachineLearningModel(); /** Destructor */ ~SVMMachineLearningModel() override; /** Predict values using the model */ TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override; /** PrintSelf method */ void PrintSelf(std::ostream& os, itk::Indent indent) const override; private: SVMMachineLearningModel(const Self&) = delete; void operator=(const Self&) = delete; #ifdef OTB_OPENCV_3 cv::Ptr m_SVMModel; #else CvSVM* m_SVMModel; #endif int m_SVMType; int m_KernelType; double m_Degree; double m_Gamma; double m_Coef0; double m_C; double m_Nu; double m_P; int m_TermCriteriaType; int m_MaxIter; double m_Epsilon; bool m_ParameterOptimization; // Output parameters double m_OutputDegree; double m_OutputGamma; double m_OutputCoef0; double m_OutputC; double m_OutputNu; double m_OutputP; }; } // end namespace otb #ifndef OTB_MANUAL_INSTANTIATION #include "otbSVMMachineLearningModel.hxx" #endif #endif