/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbSVMMarginSampler_hxx #define otbSVMMarginSampler_hxx #include "otbSVMMarginSampler.h" #include "otbMacro.h" namespace otb { template SVMMarginSampler::SVMMarginSampler() { m_NumberOfCandidates = 10; } template void SVMMarginSampler::PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os, indent); } template void SVMMarginSampler::GenerateData() { if (!m_Model) { itkExceptionMacro("No model, can not do classification."); } if (m_Model->GetNumberOfSupportVectors() == 0) { itkExceptionMacro(<< "SVM model does not contain any support vector, can not perform margin sampling."); } OutputType* output = const_cast(this->GetOutput()); output->SetSample(this->GetInput()); this->DoMarginSampling(); } template void SVMMarginSampler::DoMarginSampling() { IndexAndDistanceVectorType idDistVector; OutputType* output = const_cast(this->GetOutput()); typename TSample::ConstIterator iter = this->GetInput()->Begin(); typename TSample::ConstIterator end = this->GetInput()->End(); typename OutputType::ConstIterator iterO = output->Begin(); typename OutputType::ConstIterator endO = output->End(); typename TSample::MeasurementVectorType measurements; m_Model->SetConfidenceMode(TModel::CM_HYPER); int numberOfComponentsPerSample = iter.GetMeasurementVector().Size(); int nbClass = static_cast(m_Model->GetNumberOfClasses()); std::vector hdistances(nbClass * (nbClass - 1) / 2); otbMsgDevMacro(<< "Starting iterations "); while (iter != end && iterO != endO) { int i = 0; typename SVMModelType::InputSampleType modelMeasurement(numberOfComponentsPerSample); measurements = iter.GetMeasurementVector(); // otbMsgDevMacro( << "Loop on components " << svm_type ); for (i = 0; i < numberOfComponentsPerSample; ++i) { modelMeasurement[i] = measurements[i]; } // Get distances to the hyperplanes m_Model->Predict(modelMeasurement, &(hdistances[0])); double minDistance = std::abs(hdistances[0]); // Compute th min distances for (unsigned int j = 1; j < hdistances.size(); ++j) { if (std::abs(hdistances[j]) < minDistance) { minDistance = std::abs(hdistances[j]); } } // Keep index and min distance IndexAndDistanceType value(iter.GetInstanceIdentifier(), minDistance); idDistVector.push_back(value); ++iter; ++iterO; } // Sort index by increasing distances sort(idDistVector.begin(), idDistVector.end(), &Compare); // Display the first 10 values otbMsgDevMacro(<< " Margin Sampling: "); // Clear previous margin samples m_MarginSamples.clear(); for (unsigned int i = 0; i < m_NumberOfCandidates && i < idDistVector.size(); ++i) { otbMsgDevMacro("Sample " << idDistVector[i].first << " (distance= " << idDistVector[i].second << ")") m_MarginSamples.push_back(idDistVector[i].first); } } } // end of namespace otb #endif