/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbSharkKMeansMachineLearningModel_h #define otbSharkKMeansMachineLearningModel_h #include "boost/shared_ptr.hpp" #include "itkLightObject.h" #include "otbMachineLearningModel.h" #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Woverloaded-virtual" #pragma GCC diagnostic ignored "-Wignored-qualifiers" #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wcast-align" #pragma GCC diagnostic ignored "-Wunknown-pragmas" #pragma GCC diagnostic ignored "-Wunused-local-typedefs" #if defined(__clang__) #pragma clang diagnostic ignored "-Wheader-guard" #pragma clang diagnostic ignored "-Wexpansion-to-defined" #else #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif #endif #include "otb_shark.h" #include "shark/Models/Clustering/HardClusteringModel.h" #include "shark/Models/Clustering/SoftClusteringModel.h" #include "shark/Models/Clustering/Centroids.h" #include "shark/Models/Clustering/ClusteringModel.h" #include "shark/Algorithms/KMeans.h" #include "shark/Models/Normalizer.h" #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif /** \class SharkKMeansMachineLearningModel * \brief Shark version of Random Forests algorithm * * This is a specialization of MachineLearningModel class allowing to * use Shark implementation of the Random Forests algorithm. * * It is noteworthy that training step is parallel. * * For more information, see * http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorithms/kmeans.html * * \ingroup OTBUnsupervised */ namespace otb { template class ITK_EXPORT SharkKMeansMachineLearningModel : public MachineLearningModel { public: /** Standard class typedefs. */ typedef SharkKMeansMachineLearningModel Self; typedef MachineLearningModel Superclass; typedef itk::SmartPointer Pointer; typedef itk::SmartPointer ConstPointer; typedef typename Superclass::InputValueType InputValueType; typedef typename Superclass::InputSampleType InputSampleType; typedef typename Superclass::InputListSampleType InputListSampleType; typedef typename Superclass::TargetValueType TargetValueType; typedef typename Superclass::TargetSampleType TargetSampleType; typedef typename Superclass::TargetListSampleType TargetListSampleType; typedef typename Superclass::ConfidenceValueType ConfidenceValueType; typedef typename Superclass::ConfidenceSampleType ConfidenceSampleType; typedef typename Superclass::ConfidenceListSampleType ConfidenceListSampleType; typedef typename Superclass::ProbaSampleType ProbaSampleType; typedef typename Superclass::ProbaListSampleType ProbaListSampleType; typedef shark::HardClusteringModel ClusteringModelType; typedef ClusteringModelType::OutputType ClusteringOutputType; /** Run-time type information (and related methods). */ itkNewMacro(Self); itkTypeMacro(SharkKMeansMachineLearningModel, MachineLearningModel); /** Train the machine learning model */ virtual void Train() override; /** Save the model to file */ virtual void Save(const std::string& filename, const std::string& name = "") override; /** Load the model from file */ virtual void Load(const std::string& filename, const std::string& name = "") override; /**\name Classification model file compatibility tests */ //@{ /** Is the input model file readable and compatible with the corresponding classifier ? */ virtual bool CanReadFile(const std::string&) override; /** Is the input model file writable and compatible with the corresponding classifier ? */ virtual bool CanWriteFile(const std::string&) override; //@} /** Get the maximum number of iteration for the kMeans algorithm.*/ itkGetMacro(MaximumNumberOfIterations, unsigned); /** Set the maximum number of iteration for the kMeans algorithm.*/ itkSetMacro(MaximumNumberOfIterations, unsigned); /** Get the number of class for the kMeans algorithm.*/ itkGetMacro(K, unsigned); /** Set the number of class for the kMeans algorithm.*/ itkSetMacro(K, unsigned); /** Initialize the centroids for the kmeans algorithm */ void SetCentroidsFromData(const shark::Data& data) { m_Centroids.setCentroids(data); this->Modified(); } void ExportCentroids(const std::string& filename); protected: /** Constructor */ SharkKMeansMachineLearningModel(); /** Destructor */ virtual ~SharkKMeansMachineLearningModel(); /** Predict values using the model */ virtual TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override; virtual void DoPredictBatch(const InputListSampleType*, const unsigned int& startIndex, const unsigned int& size, TargetListSampleType*, ConfidenceListSampleType* = nullptr, ProbaListSampleType* = nullptr) const override; /** PrintSelf method */ void PrintSelf(std::ostream& os, itk::Indent indent) const override; private: SharkKMeansMachineLearningModel(const Self&) = delete; void operator=(const Self&) = delete; // Parameters set by the user unsigned int m_K; unsigned int m_MaximumNumberOfIterations; bool m_CanRead; /** Centroids results form kMeans */ shark::Centroids m_Centroids; /** shark Model could be SoftClusteringModel or HardClusteringModel */ boost::shared_ptr m_ClusteringModel; }; } // end namespace otb #ifndef OTB_MANUAL_INSTANTIATION #include "otbSharkKMeansMachineLearningModel.hxx" #endif #endif