/* * Copyright (C) 2005-2019 Centre National d'Etudes Spatiales (CNES) * * This file is part of Orfeo Toolbox * * https://www.orfeo-toolbox.org/ * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef otbSharkUtils_h #define otbSharkUtils_h #include #include #include #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wunused-local-typedefs" #if defined(__clang__) #pragma clang diagnostic ignored "-Wheader-guard" #pragma clang diagnostic ignored "-Wexpansion-to-defined" #endif #endif #include "otb_shark.h" #include "shark/Data/Dataset.h" #if defined(__GNUC__) || defined(__clang__) #pragma GCC diagnostic pop #endif namespace otb { namespace Shark { template void ListSampleRangeToSharkVector(const T * listSample, std::vector & output, unsigned int start, unsigned int size) { assert(listSample != nullptr); if(start+size>listSample->Size()) { std::out_of_range e_(std::string("otb::Shark::ListSampleRangeToSharkVector " ": Requested range is out of list sample bounds")); throw e_; } output.clear(); // Sample index unsigned int sampleIdx = start; //Check for valid listSample if(listSample->Size()>0) { // Retrieve samples size alike const unsigned int sampleSize = listSample->GetMeasurementVectorSize(); // Fill the output vector for (auto const endOfRange = start+size ; sampleIdx < endOfRange ; ++sampleIdx) { // Retrieve sample typename T::MeasurementVectorType const & sample = listSample->GetMeasurementVector(sampleIdx); // // Define a shark::RealVector // shark::RealVector rv(sampleSize); // // Loop on sample size // for(unsigned int i = 0; i < sampleSize; ++i) // { // rv[i] = sample[i]; // } // using std::move; // output.emplace_back(move(rv)); output.emplace_back(&sample[0], &sample[0]+sampleSize); } } } template void ListSampleRangeToSharkVector(const T * listSample, std::vector & output, unsigned int start, unsigned int size) { assert(listSample != nullptr); if(start+size>listSample->Size()) { std::out_of_range e_(std::string("otb::Shark::ListSampleRangeToSharkVector " ": Requested range is out of list sample bounds")); throw e_; } output.clear(); // Sample index unsigned int sampleIdx = start; //Check for valid listSample if(listSample->Size()>0) { // Fill the output vector while(sampleIdxGetMeasurementVector(sampleIdx); // Define a shark::RealVector output.push_back(sample[0]); ++sampleIdx; } } } template void ListSampleToSharkVector(const T * listSample, std::vector & output) { assert(listSample != nullptr); ListSampleRangeToSharkVector(listSample,output,0U,static_cast(listSample->Size())); } template void ListSampleToSharkVector(const T * listSample, std::vector & output) { assert(listSample != nullptr); ListSampleRangeToSharkVector(listSample,output,0, static_cast(listSample->Size())); } /** Shark assumes that labels are 0 ... (nbClasses-1). This function modifies the labels contained in the input vector and returns a vector with size = nbClasses which allows the translation from the normalised labels to the new ones oldLabel = dictionary[newLabel]. When we want to generate the image containing the probability for each class, we need to ensure that the probabilities are in the correct order wrt the incoming labels. We therefore sort the labels before building the encoding. */ template void NormalizeLabelsAndGetDictionary(std::vector& labels, std::vector& dictionary) { std::vector sorted_labels = labels; std::sort(std::begin(sorted_labels), std::end(sorted_labels)); auto last = std::unique(std::begin(sorted_labels), std::end(sorted_labels)); sorted_labels.erase(last, std::end(sorted_labels)); std::unordered_map dictMap; T labelCount{0}; for(const auto& l : sorted_labels) { if(dictMap.find(l)==dictMap.end()) dictMap.insert({l, labelCount++}); } dictionary.resize(labelCount); for(auto& l : labels) { auto newLabel = dictMap[l]; dictionary[newLabel] = l; l = newLabel; } } } } #endif