//=========================================================================== /*! * * * \brief Kernel Gram matrix * * * \par * * * * \author T. Glasmachers * \date 2007-2012 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_LINALG_KERNELMATRIX_H #define SHARK_LINALG_KERNELMATRIX_H #include #include #include #include #include namespace shark { /// /// \brief Kernel Gram matrix /// /// \par /// The KernelMatrix is the most prominent type of matrix /// for quadratic programming. It provides the Gram matrix /// of a fixed data set with respect to an inner product /// implicitly defined by a kernel function. /// /// \par /// NOTE: The KernelMatrix class stores pointers to the /// data, instead of maintaining a copy of the data. Thus, /// it implicitly assumes that the dataset is not altered /// during the lifetime of the KernelMatrix object. This /// condition is ensured as long as the class is used via /// the various SVM-trainers. /// template class KernelMatrix { public: typedef CacheType QpFloatType; /// Constructor /// \param kernelfunction kernel function defining the Gram matrix /// \param data data to evaluate the kernel function KernelMatrix(AbstractKernelFunction const& kernelfunction, Data const& data) : kernel(kernelfunction) , m_data(data) , m_accessCounter( 0 ) { std::size_t elements = m_data.numberOfElements(); x.resize(elements); typename Data::const_element_range::iterator iter=m_data.elements().begin(); for(std::size_t i = 0; i != elements; ++i,++iter){ x[i]=iter.getInnerIterator(); } } /// return a single matrix entry QpFloatType operator () (std::size_t i, std::size_t j) const { return entry(i, j); } /// return a single matrix entry QpFloatType entry(std::size_t i, std::size_t j) const { ++m_accessCounter; return (QpFloatType)kernel.eval(*x[i], *x[j]); } /// \brief Computes the i-th row of the kernel matrix. /// ///The entries start,...,end of the i-th row are computed and stored in storage. ///There must be enough room for this operation preallocated. void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{ m_accessCounter += end-start; typename AbstractKernelFunction::ConstInputReference xi = *x[i]; SHARK_PARALLEL_FOR(int j = (int)start; j < (int) end; j++) { storage[j-start] = QpFloatType(kernel.eval(xi, *x[j])); } } /// \brief Computes the kernel-matrix template void matrix( blas::matrix_expression & storage ) const{ calculateRegularizedKernelMatrix(kernel,m_data,storage); } /// swap two variables void flipColumnsAndRows(std::size_t i, std::size_t j){ using std::swap; swap(x[i],x[j]); } /// return the size of the quadratic matrix std::size_t size() const { return x.size(); } /// query the kernel access counter unsigned long long getAccessCount() const { return m_accessCounter; } /// reset the kernel access counter void resetAccessCount() { m_accessCounter = 0; } protected: /// Kernel function defining the kernel Gram matrix const AbstractKernelFunction& kernel; Data m_data; typedef typename Batch::const_iterator PointerType; /// Array of data pointers for kernel evaluations std::vector x; /// counter for the kernel accesses mutable unsigned long long m_accessCounter; }; } #endif