//=========================================================================== /*! * * * \brief Modified Kernel Gram matrix * * * \par * * * * \author T. Glasmachers * \date 2007-2012 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_LINALG_MODIFIEDKERNELMATRIX_H #define SHARK_LINALG_MODIFIEDKERNELMATRIX_H #include #include #include #include namespace shark { /// /// \brief Modified Kernel Gram matrix /// /// \par /// The ModifiedKernelMatrix represents the kernel matrix /// multiplied element-wise with a factor depending on the /// labels of the training examples. This is useful for the /// MCMMR method (multi-class maximum margin regression). template class ModifiedKernelMatrix { private: typedef KernelMatrix Matrix; public: typedef typename Matrix::QpFloatType QpFloatType; /// Constructor /// \param kernelfunction kernel function /// \param data data to evaluate the kernel function /// \param modifierEq multiplier for same-class labels /// \param modifierNe multiplier for different-class kernels ModifiedKernelMatrix( AbstractKernelFunction const& kernelfunction, LabeledData const& data, QpFloatType modifierEq, QpFloatType modifierNe ): m_matrix(kernelfunction,data.inputs()) , m_labels(data.numberOfElements()) , m_modifierEq(modifierEq) , m_modifierNe(modifierNe){ for(std::size_t i = 0; i != m_labels.size(); ++i){ m_labels[i] = data.element(i).label; } } /// return a single matrix entry QpFloatType operator () (std::size_t i, std::size_t j) const { return entry(i, j); } /// return a single matrix entry QpFloatType entry(std::size_t i, std::size_t j) const { QpFloatType ret = m_matrix(i,j); QpFloatType modifier = m_labels[i] == m_labels[j] ? m_modifierEq : m_modifierNe; return modifier*ret; } /// \brief Computes the i-th row of the kernel matrix. /// ///The entries start,...,end of the i-th row are computed and stored in storage. ///There must be enough room for this operation preallocated. void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{ m_matrix.row(i,start,end,storage); //apply modifiers unsigned int labeli = m_labels[i]; for(std::size_t j = start; j < end; j++){ QpFloatType modifier = (labeli == m_labels[j]) ? m_modifierEq : m_modifierNe; storage[j-start] *= modifier; } } /// \brief Computes the kernel-matrix template void matrix( blas::matrix_expression & storage ) const{ m_matrix.matrix(storage); for(std::size_t i = 0; i != size(); ++i){ unsigned int labeli = m_labels[i]; for(std::size_t j = 0; j != size(); ++j){ QpFloatType modifier = (labeli == m_labels[j]) ? m_modifierEq : m_modifierNe; storage()(i,j) *= modifier; } } } /// swap two variables void flipColumnsAndRows(std::size_t i, std::size_t j){ m_matrix.flipColumnsAndRows(i,j); std::swap(m_labels[i],m_labels[j]); } /// return the size of the quadratic matrix std::size_t size() const { return m_matrix.size(); } /// query the kernel access counter unsigned long long getAccessCount() const { return m_matrix.getAccessCount(); } /// reset the kernel access counter void resetAccessCount() { m_matrix.resetAccessCount(); } protected: /// Kernel matrix which computes the basic entries. Matrix m_matrix; std::vector m_labels; /// modifier in case the labels are equal QpFloatType m_modifierEq; /// modifier in case the labels differ QpFloatType m_modifierNe; }; } #endif