//=========================================================================== /*! * * * \brief linear kernel (standard inner product) * * * * \author T.Glasmachers, O. Krause, M. Tuma * \date 2010, 2011 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_MODELS_KERNELS_LINEAR_KERNEL_H #define SHARK_MODELS_KERNELS_LINEAR_KERNEL_H #include namespace shark{ /// \brief Linear Kernel, parameter free template class LinearKernel : public AbstractKernelFunction { private: typedef AbstractKernelFunction base_type; public: typedef typename base_type::BatchInputType BatchInputType; typedef typename base_type::ConstInputReference ConstInputReference; typedef typename base_type::ConstBatchInputReference ConstBatchInputReference; LinearKernel(){ this->m_features|=base_type::HAS_FIRST_PARAMETER_DERIVATIVE; this->m_features|=base_type::HAS_FIRST_INPUT_DERIVATIVE; this->m_features|= base_type::SUPPORTS_VARIABLE_INPUT_SIZE; } /// \brief From INameable: return the class name. std::string name() const { return "LinearKernel"; } RealVector parameterVector() const{ return RealVector(); } void setParameterVector(RealVector const& newParameters){ SIZE_CHECK(newParameters.size() == 0); } boost::shared_ptr createState()const{ return boost::shared_ptr(new EmptyState()); } double eval(ConstInputReference x1, ConstInputReference x2) const{ SIZE_CHECK(x1.size() == x2.size()); return inner_prod(x1, x2); } void eval(ConstBatchInputReference x1, ConstBatchInputReference x2, RealMatrix& result, State& state) const{ eval(x1,x2,result); } void eval(ConstBatchInputReference x1, ConstBatchInputReference x2, RealMatrix& result) const{ SIZE_CHECK(x1.size2() == x2.size2()); result.resize(x1.size1(),x2.size1()); noalias(result) = prod(x1,trans(x2)); } void weightedParameterDerivative( ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const& coefficients, State const& state, RealVector& gradient ) const{ SIZE_CHECK(batchX1.size2() == batchX2.size2()); gradient.resize(0); } void weightedInputDerivative( ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const& coefficientsX2, State const& state, BatchInputType& gradient ) const{ SIZE_CHECK(batchX1.size2() == batchX2.size2()); //~ SIZE_CHECK(cofficientsX2.size1() == batchX1.size1()); //~ SIZE_CHECK(cofficientsX2.size2() == batchX2.size1()); gradient.resize(batchX1.size1(),batchX1.size2()); noalias(gradient) = prod(coefficientsX2,batchX2); } virtual double featureDistanceSqr(ConstInputReference x1, ConstInputReference x2) const{ return distanceSqr(x1,x2); } virtual RealMatrix featureDistanceSqr(ConstBatchInputReference x1, ConstBatchInputReference x2) const{ return distanceSqr(x1,x2); } /// \brief The kernel does not serialize anything void read(InArchive& ar){} /// \brief The kernel does not serialize anything void write(OutArchive& ar) const{} }; typedef LinearKernel<> DenseLinearKernel; typedef LinearKernel CompressedLinearKernel; } #endif