//=========================================================================== /*! * * * \brief monomial (polynomial) kernel * * * * \author T.Glasmachers, O. Krause, M. Tuma * \date 2012 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_MODELS_KERNELS_MONOMIAL_KERNEL_H #define SHARK_MODELS_KERNELS_MONOMIAL_KERNEL_H #include namespace shark { /// \brief Monomial kernel. Calculates \f$ \left\langle x_1, x_2 \right\rangle^m_exponent \f$ /// /// \par /// The degree \f$ m_exponent \f$ is a non-trainable but configurable parameter. /// The default value is one - exactly the same as a LinearKernel. template class MonomialKernel : public AbstractKernelFunction { private: typedef AbstractKernelFunction base_type; struct InternalState: public State{ RealMatrix base;//stores the inner product of vectors x_1,x_j which is the base the late rused pow RealMatrix exponentedProd;//pow(base,m_exponent) void resize(std::size_t sizeX1, std::size_t sizeX2){ base.resize(sizeX1, sizeX2); exponentedProd.resize(sizeX1, sizeX2); } }; public: typedef typename base_type::BatchInputType BatchInputType; typedef typename base_type::ConstInputReference ConstInputReference; typedef typename base_type::ConstBatchInputReference ConstBatchInputReference; MonomialKernel():m_exponent(1){ this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE; this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE; this->m_features |= base_type::SUPPORTS_VARIABLE_INPUT_SIZE; } MonomialKernel(unsigned int n):m_exponent(n){ this->m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE; this->m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE; this->m_features |= base_type::SUPPORTS_VARIABLE_INPUT_SIZE; } /// \brief From INameable: return the class name. std::string name() const { return "MonomialKernel"; } RealVector parameterVector() const{ return RealVector(0); } void setParameterVector(RealVector const& newParameters){ SIZE_CHECK(newParameters.size() == 0); } std::size_t numberOfParameters() const{ return 0; } ///\brief creates the internal state of the kernel boost::shared_ptr createState()const{ return boost::shared_ptr(new InternalState()); } /////////////////////////EVALUATION////////////////////////////// double eval(ConstInputReference x1, ConstInputReference x2) const{ SIZE_CHECK(x1.size() == x2.size()); double prod=inner_prod(x1, x2); return std::pow(prod,m_exponent); } void eval(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix& result) const{ SIZE_CHECK(batchX1.size2() == batchX2.size2()); std::size_t sizeX1 = batchX1.size1(); std::size_t sizeX2 = batchX2.size1(); result.resize(sizeX1,sizeX2); noalias(result) = prod(batchX1,trans(batchX2)); if(m_exponent != 1) noalias(result) = pow(result,m_exponent); } void eval(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix& result, State& state) const{ SIZE_CHECK(batchX1.size2() == batchX2.size2()); std::size_t sizeX1 = batchX1.size1(); std::size_t sizeX2 = batchX2.size1(); result.resize(sizeX1,sizeX2); InternalState& s = state.toState(); s.resize(sizeX1,sizeX2); //calculate the inner product noalias(s.base) = prod(batchX1,trans(batchX2)); //now do exponentiation if(m_exponent != 1) noalias(result) = pow(s.base,m_exponent); else noalias(result) = s.base; //store also in state noalias(s.exponentedProd) = result; } ////////////////////////DERIVATIVES//////////////////////////// void weightedParameterDerivative( ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const& coefficients, State const& state, RealVector& gradient ) const{ SIZE_CHECK(batchX1.size2() == batchX2.size2()); gradient.resize(0); } void weightedInputDerivative( ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const& coefficientsX2, State const& state, BatchInputType& gradient ) const{ std::size_t sizeX1 = batchX1.size1(); std::size_t sizeX2 = batchX2.size1(); gradient.resize(sizeX1,batchX1.size2()); InternalState const& s = state.toState(); //internal checks SIZE_CHECK(batchX1.size2() == batchX2.size2()); SIZE_CHECK(s.base.size1() == sizeX1); SIZE_CHECK(s.base.size2() == sizeX2); SIZE_CHECK(s.exponentedProd.size1() == sizeX1); SIZE_CHECK(s.exponentedProd.size2() == sizeX2); //first calculate weights(i,j) = coeff(i)*exp(i,j)/prod(i,j) //we have to take the usual division by 0 into account RealMatrix weights = coefficientsX2 * safe_div(s.exponentedProd,s.base,0.0); //The derivative of input i of batch x1 is //g = sum_j m_exponent*weights(i,j)*x2_j //we now sum over j which is a matrix-matrix product noalias(gradient) = m_exponent * prod(weights,batchX2); } void read(InArchive& ar){ ar >> m_exponent; } void write(OutArchive& ar) const{ ar << m_exponent; } protected: ///the exponent of the monomials int m_exponent; }; typedef MonomialKernel<> DenseMonomialKernel; typedef MonomialKernel CompressedMonomialKernel; } #endif