//=========================================================================== /*! * * * \brief A kernel function that wraps a member kernel and multiplies it by a scalar. * * * * \author M. Tuma, T. Glasmachers, O. Krause * \date 2012 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_MODELS_KERNELS_SCALED_KERNEL_H #define SHARK_MODELS_KERNELS_SCALED_KERNEL_H #include namespace shark { /// \brief Scaled version of a kernel function /// /// For a positive definite kernel k, the scaled kernel /// \f[ \tilde k(x_1, x_2) := c k(x_1, x_2) \f] /// is again a positive definite kernel function as long as \f$ c > 0 \f$. template class ScaledKernel : public AbstractKernelFunction { private: typedef AbstractKernelFunction base_type; public: typedef typename base_type::BatchInputType BatchInputType; typedef typename base_type::ConstInputReference ConstInputReference; typedef typename base_type::ConstBatchInputReference ConstBatchInputReference; ScaledKernel( AbstractKernelFunction* base, double factor = 1.0 ) : m_base( base ), m_factor( factor ) { RANGE_CHECK( factor > 0 ); SHARK_ASSERT( base != NULL ); if ( m_base->hasFirstInputDerivative() ) this->m_features|=base_type::HAS_FIRST_INPUT_DERIVATIVE; if ( m_base->hasFirstParameterDerivative() ) this->m_features|=base_type::HAS_FIRST_PARAMETER_DERIVATIVE; } /// \brief From INameable: return the class name. std::string name() const { return "ScaledKernel"; } RealVector parameterVector() const { return m_base->parameterVector(); } void setParameterVector(RealVector const& newParameters) { m_base->setParameterVector(newParameters); } std::size_t numberOfParameters() const { return m_base->numberOfParameters(); } ///\brief creates the internal state of the kernel boost::shared_ptr createState()const{ return m_base->createState(); } const double factor() { return m_factor; } void setFactor( double f ) { RANGE_CHECK( f > 0 ); m_factor = f; } const base_type* base() const { return m_base; } double eval(ConstInputReference x1, ConstInputReference x2) const { SIZE_CHECK(x1.size() == x2.size()); return m_factor * m_base->eval(x1, x2); } void eval(ConstBatchInputReference x1, ConstBatchInputReference x2, RealMatrix& result) const{ m_base->eval(x1, x2,result); result *= m_factor; } void eval(ConstBatchInputReference x1, ConstBatchInputReference x2, RealMatrix& result, State& state) const{ m_base->eval(x1, x2,result,state); result *= m_factor; } /// calculates the weighted derivate w.r.t. the parameters of the base kernel void weightedParameterDerivative( ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const& coefficients, State const& state, RealVector& gradient ) const{ m_base->weightedParameterDerivative( batchX1, batchX2, coefficients, state, gradient ); gradient *= m_factor; } /// calculates the weighted derivate w.r.t. argument \f$ x_1 \f$ void weightedInputDerivative( ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const& coefficientsX2, State const& state, BatchInputType& gradient ) const{ SIZE_CHECK(coefficientsX2.size1() == batchSize(batchX1)); SIZE_CHECK(coefficientsX2.size2() == batchSize(batchX2)); m_base->weightedInputDerivative( batchX1, batchX2, coefficientsX2, state, gradient ); gradient *= m_factor; } void read(InArchive& ar){ ar >> m_factor; ar >> *m_base; } /// \brief The kernel does not serialize anything void write(OutArchive& ar) const{ ar << m_factor; //const cast needed to prevent warning ar << const_cast const&>(*m_base); } protected: AbstractKernelFunction* m_base; ///< kernel to scale double m_factor; ///< scaling factor }; typedef ScaledKernel<> DenseScaledKernel; typedef ScaledKernel CompressedScaledKernel; } #endif