//===========================================================================
/*!
*
*
* \brief Variant of WeightedSumKernel which works on subranges of Vector inputs
*
*
*
* \author S., O.Krause
* \date 2012
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
//===========================================================================
#ifndef SHARK_MODELS_KERNELS_SUBRANGE_KERNEL_H
#define SHARK_MODELS_KERNELS_SUBRANGE_KERNEL_H
#include
namespace shark {
namespace detail{
/// \brief given two vectors of input x = (x_1,...,x_n), y = (y_1,...,y_n), a subrange 1<=k
class SubrangeKernelWrapper : public AbstractKernelFunction{
private:
typedef AbstractKernelFunction base_type;
public:
typedef typename base_type::BatchInputType BatchInputType;
typedef typename base_type::ConstInputReference ConstInputReference;
typedef typename base_type::ConstBatchInputReference ConstBatchInputReference;
SubrangeKernelWrapper(AbstractKernelFunction* kernel,std::size_t start, std::size_t end)
:m_kernel(kernel),m_start(start),m_end(end){
if(kernel->hasFirstParameterDerivative())
this->m_features|=base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
if(kernel->hasFirstInputDerivative())
this->m_features|=base_type::HAS_FIRST_INPUT_DERIVATIVE;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "SubrangeKernelWrapper"; }
RealVector parameterVector() const {
return m_kernel->parameterVector();
}
void setParameterVector(RealVector const& newParameters) {
m_kernel->setParameterVector(newParameters);
}
std::size_t numberOfParameters() const {
return m_kernel->numberOfParameters();
}
///\brief creates the internal state of the kernel
boost::shared_ptr createState()const{
return m_kernel->createState();
}
double eval(ConstInputReference x1, ConstInputReference x2) const{
return m_kernel->eval(blas::subrange(x1,m_start,m_end),blas::subrange(x2,m_start,m_end));
}
void eval(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix& result, State& state) const{
m_kernel->eval(columns(batchX1,m_start,m_end),columns(batchX2,m_start,m_end),result,state);
}
void eval(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix& result) const{
m_kernel->eval(columns(batchX1,m_start,m_end),columns(batchX2,m_start,m_end),result);
}
void weightedParameterDerivative(
ConstBatchInputReference batchX1,
ConstBatchInputReference batchX2,
RealMatrix const& coefficients,
State const& state,
RealVector& gradient
) const{
m_kernel->weightedParameterDerivative(
columns(batchX1,m_start,m_end),
columns(batchX2,m_start,m_end),
coefficients,
state,
gradient
);
}
void weightedInputDerivative(
ConstBatchInputReference batchX1,
ConstBatchInputReference batchX2,
RealMatrix const& coefficientsX2,
State const& state,
BatchInputType& gradient
) const{
BatchInputType temp(gradient.size1(),m_end-m_start);
m_kernel->weightedInputDerivative(
columns(batchX1,m_start,m_end),
columns(batchX2,m_start,m_end),
coefficientsX2,
state,
temp
);
ensure_size(gradient,batchX1.size1(),batchX2.size2());
gradient.clear();
noalias(columns(gradient,m_start,m_end)) = temp;
}
//w don't need serializing here, this is done by the implementing Kernel
void read(InArchive& ar){
}
void write(OutArchive& ar) const{
}
private:
AbstractKernelFunction* m_kernel;
std::size_t m_start;
std::size_t m_end;
};
template
class SubrangeKernelBase
{
public:
template
SubrangeKernelBase(Kernels const& kernels, Ranges const& ranges){
SIZE_CHECK(kernels.size() == ranges.size());
for(std::size_t i = 0; i != kernels.size(); ++i){
m_kernelWrappers.push_back(
SubrangeKernelWrapper(kernels[i],ranges[i].first,ranges[i].second)
);
}
}
std::vector* > makeKernelVector(){
std::vector* > kernels(m_kernelWrappers.size());
for(std::size_t i = 0; i != m_kernelWrappers.size(); ++i)
kernels[i] = & m_kernelWrappers[i];
return kernels;
}
std::vector > m_kernelWrappers;
};
}
/// \brief Weighted sum of kernel functions
///
/// For a set of positive definite kernels \f$ k_1, \dots, k_n \f$
/// with positive coeffitients \f$ w_1, \dots, w_n \f$ the sum
/// \f[ \tilde k(x_1, x_2) := \sum_{i=1}^{n} w_i \cdot k_i(x_1, x_2) \f]
/// is again a positive definite kernel function. This still holds when
/// the sub-kernels only operate of a subset of features, that is, when
/// we have a direct sum kernel ( see e.g. the UCSC Technical Report UCSC-CRL-99-10:
/// Convolution Kernels on Discrete Structures by David Haussler ).
///
/// This class is very similar to the #WeightedSumKernel , except that it assumes it's
/// inputs to be tuples of values \f$ x=(x_1,\dots, x_n) \f$ and we calculate the direct
/// sum of kernels
/// \f[ \tilde k(x, y) := \sum_{i=1}^{n} w_i \cdot k_i(x_i, y_i) \f]
///
/// Internally, the weights are represented as \f$ w_i = \exp(\xi_i) \f$
/// to allow for unconstrained optimization.
///
/// The result of the kernel evaluation is devided by the sum of the
/// kernel weights, so that in total, this amounts to fixing the sum
/// of the weights to one.
template >
class SubrangeKernel
: private detail::SubrangeKernelBase//order is important!
, public InnerKernel
{
private:
typedef detail::SubrangeKernelBase base_type1;
public:
/// \brief From INameable: return the class name.
std::string name() const
{ return "SubrangeKernel"; }
template
SubrangeKernel(Kernels const& kernels, Ranges const& ranges)
: base_type1(kernels,ranges)
, InnerKernel(base_type1::makeKernelVector()){}
};
typedef SubrangeKernel DenseSubrangeKernel;
typedef SubrangeKernel CompressesSubrangeKernel;
}
#endif