/*! * * * \brief Convex quadratic benchmark function with single dominant axis * * * \author - * \date - * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ #ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_ACKLEY_H #define SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_ACKLEY_H #include #include namespace shark { /** * \brief Convex quadratic benchmark function with single dominant axis */ struct Ackley : public SingleObjectiveFunction { Ackley(std::size_t numberOfVariables = 5) { m_features |= CAN_PROPOSE_STARTING_POINT; m_numberOfVariables = numberOfVariables; } /// \brief From INameable: return the class name. std::string name() const { return "Ackley"; } std::size_t numberOfVariables()const{ return m_numberOfVariables; } bool hasScalableDimensionality()const{ return true; } /// \brief Adjusts the number of variables if the function is scalable. /// \param [in] numberOfVariables The new dimension. void setNumberOfVariables( std::size_t numberOfVariables ){ m_numberOfVariables = numberOfVariables; } SearchPointType proposeStartingPoint() const { SearchPointType x; x.resize(m_numberOfVariables); for (std::size_t i = 0; i < x.size(); i++) { x(i) = random::uni(*mep_rng, -10, 10); } return x; } double eval(const SearchPointType &p) const { m_evaluationCounter++; const double A = 20.; const double B = 0.2; const double C = 2* M_PI; std::size_t n = p.size(); double a = 0., b = 0.; for (std::size_t i = 0; i < n; ++i) { a += p(i) * p(i); b += cos(C * p(i)); } return -A * std::exp(-B * std::sqrt(a / n)) - std::exp(b / n) + A + M_E; } private: std::size_t m_numberOfVariables; }; } #endif