/*!
*
*
* \brief Convex quadratic benchmark function with single dominant axis
*
*
* \author -
* \date -
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_ACKLEY_H
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_ACKLEY_H
#include
#include
namespace shark {
/**
* \brief Convex quadratic benchmark function with single dominant axis
*/
struct Ackley : public SingleObjectiveFunction {
Ackley(std::size_t numberOfVariables = 5) {
m_features |= CAN_PROPOSE_STARTING_POINT;
m_numberOfVariables = numberOfVariables;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "Ackley"; }
std::size_t numberOfVariables()const{
return m_numberOfVariables;
}
bool hasScalableDimensionality()const{
return true;
}
/// \brief Adjusts the number of variables if the function is scalable.
/// \param [in] numberOfVariables The new dimension.
void setNumberOfVariables( std::size_t numberOfVariables ){
m_numberOfVariables = numberOfVariables;
}
SearchPointType proposeStartingPoint() const {
SearchPointType x;
x.resize(m_numberOfVariables);
for (std::size_t i = 0; i < x.size(); i++) {
x(i) = random::uni(*mep_rng, -10, 10);
}
return x;
}
double eval(const SearchPointType &p) const {
m_evaluationCounter++;
const double A = 20.;
const double B = 0.2;
const double C = 2* M_PI;
std::size_t n = p.size();
double a = 0., b = 0.;
for (std::size_t i = 0; i < n; ++i) {
a += p(i) * p(i);
b += cos(C * p(i));
}
return -A * std::exp(-B * std::sqrt(a / n)) - std::exp(b / n) + A + M_E;
}
private:
std::size_t m_numberOfVariables;
};
}
#endif