//===========================================================================
/*!
*
*
* \brief Objective function DTLZ6
*
*
*
* \author T.Voss, T. Glasmachers, O.Krause
* \date 2010-2011
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ6_H
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ6_H
#include
#include
namespace shark {
/**
* \brief Implements the benchmark function DTLZ6.
*
* See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.7531&rep=rep1&type=pdf
* The benchmark function exposes the following features:
* - Scalable w.r.t. the searchspace and w.r.t. the objective space.
* - Highly multi-modal.
*/
struct DTLZ6 : public MultiObjectiveFunction
{
DTLZ6(std::size_t numVariables = 0) : m_objectives(2), m_handler(SearchPointType(numVariables,0),SearchPointType(numVariables,1) ){
announceConstraintHandler(&m_handler);
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "DTLZ6"; }
std::size_t numberOfObjectives()const{
return m_objectives;
}
bool hasScalableObjectives()const{
return true;
}
void setNumberOfObjectives( std::size_t numberOfObjectives ){
m_objectives = numberOfObjectives;
}
std::size_t numberOfVariables()const{
return m_handler.dimensions();
}
bool hasScalableDimensionality()const{
return true;
}
/// \brief Adjusts the number of variables if the function is scalable.
/// \param [in] numberOfVariables The new dimension.
void setNumberOfVariables( std::size_t numberOfVariables ){
m_handler.setBounds(
SearchPointType(numberOfVariables,0),
SearchPointType(numberOfVariables,1)
);
}
ResultType eval( const SearchPointType & x ) const {
m_evaluationCounter++;
ResultType value( numberOfObjectives() );
std::vector phi(numberOfObjectives());
std::size_t k = numberOfVariables() - numberOfObjectives() + 1 ;
double g = 0.0 ;
for (std::size_t i = numberOfVariables() - k + 1; i <= numberOfVariables(); i++)
g += std::pow(x(i-1), 0.1);
double t = M_PI / (4 * (1 + g));
phi[0] = x(0) * M_PI / 2;
for (std::size_t i = 2; i <= numberOfObjectives() - 1; i++)
phi[i-1] = t * (1 + 2 * g * x(i-1) );
for (std::size_t i = 1; i <= numberOfObjectives(); i++)
{
double f = (1 + g);
for (std::size_t j = numberOfObjectives() - i; j >= 1; j--)
f *= std::cos(phi[j-1]);
if (i > 1)
f *= std::sin(phi[(numberOfObjectives() - i + 1) - 1]);
value[i-1] = f ;
}
return( value );
}
private:
std::size_t m_objectives;
BoxConstraintHandler m_handler;
};
}
#endif