//=========================================================================== /*! * * * \brief Objective function DTLZ7 * * * * \author T.Voss, T. Glasmachers, O.Krause * \date 2010-2011 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ7_H #define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ7_H #include #include namespace shark { /** * \brief Implements the benchmark function DTLZ7. * * See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.7531&rep=rep1&type=pdf * The benchmark function exposes the following features: * - Scalable w.r.t. the searchspace and w.r.t. the objective space. * - Disconnected Pareto front. */ struct DTLZ7 : public MultiObjectiveFunction { DTLZ7(std::size_t numVariables = 0) : m_objectives(2), m_handler(numVariables,0,1 ){ announceConstraintHandler(&m_handler); } /// \brief From INameable: return the class name. std::string name() const { return "DTLZ7"; } std::size_t numberOfObjectives()const{ return m_objectives; } bool hasScalableObjectives()const{ return true; } void setNumberOfObjectives( std::size_t numberOfObjectives ){ m_objectives = numberOfObjectives; } std::size_t numberOfVariables()const{ return m_handler.dimensions(); } bool hasScalableDimensionality()const{ return true; } /// \brief Adjusts the number of variables if the function is scalable. /// \param [in] numberOfVariables The new dimension. void setNumberOfVariables( std::size_t numberOfVariables ){ m_handler.setBounds( SearchPointType(numberOfVariables,0), SearchPointType(numberOfVariables,1) ); } ResultType eval( const SearchPointType & x ) const { m_evaluationCounter++; RealVector value( numberOfObjectives() ); std::size_t k = numberOfVariables() - numberOfObjectives() + 1 ; double g = 0.0 ; for (std::size_t i = numberOfVariables() - k + 1; i <= numberOfVariables(); i++) g += x(i-1); g = 1 + 9 * g / k; for (std::size_t i = 0; i != numberOfObjectives(); i++) value[i] = x(i); double h = 0.0 ; for (std::size_t j = 1; j <= numberOfObjectives() - 1; j++) h += x(j-1) / (1 + g) * ( 1 + std::sin( 3 * M_PI * x(j-1) ) ); h = numberOfObjectives() - h ; value[numberOfObjectives()-1] = (1 + g) * h; return value; } private: std::size_t m_objectives; BoxConstraintHandler m_handler; }; } #endif