//===========================================================================
/*!
*
*
* \brief Objective function DTLZ7
*
*
*
* \author T.Voss, T. Glasmachers, O.Krause
* \date 2010-2011
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ7_H
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ7_H
#include
#include
namespace shark {
/**
* \brief Implements the benchmark function DTLZ7.
*
* See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.7531&rep=rep1&type=pdf
* The benchmark function exposes the following features:
* - Scalable w.r.t. the searchspace and w.r.t. the objective space.
* - Disconnected Pareto front.
*/
struct DTLZ7 : public MultiObjectiveFunction
{
DTLZ7(std::size_t numVariables = 0) : m_objectives(2), m_handler(numVariables,0,1 ){
announceConstraintHandler(&m_handler);
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "DTLZ7"; }
std::size_t numberOfObjectives()const{
return m_objectives;
}
bool hasScalableObjectives()const{
return true;
}
void setNumberOfObjectives( std::size_t numberOfObjectives ){
m_objectives = numberOfObjectives;
}
std::size_t numberOfVariables()const{
return m_handler.dimensions();
}
bool hasScalableDimensionality()const{
return true;
}
/// \brief Adjusts the number of variables if the function is scalable.
/// \param [in] numberOfVariables The new dimension.
void setNumberOfVariables( std::size_t numberOfVariables ){
m_handler.setBounds(
SearchPointType(numberOfVariables,0),
SearchPointType(numberOfVariables,1)
);
}
ResultType eval( const SearchPointType & x ) const {
m_evaluationCounter++;
RealVector value( numberOfObjectives() );
std::size_t k = numberOfVariables() - numberOfObjectives() + 1 ;
double g = 0.0 ;
for (std::size_t i = numberOfVariables() - k + 1; i <= numberOfVariables(); i++)
g += x(i-1);
g = 1 + 9 * g / k;
for (std::size_t i = 0; i != numberOfObjectives(); i++)
value[i] = x(i);
double h = 0.0 ;
for (std::size_t j = 1; j <= numberOfObjectives() - 1; j++)
h += x(j-1) / (1 + g) * ( 1 + std::sin( 3 * M_PI * x(j-1) ) );
h = numberOfObjectives() - h ;
value[numberOfObjectives()-1] = (1 + g) * h;
return value;
}
private:
std::size_t m_objectives;
BoxConstraintHandler m_handler;
};
}
#endif