/*!
*
*
* \brief Convex quadratic benchmark function.
*
*
* \author -
* \date 2010-2011
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_DISCUS_H
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_DISCUS_H
#include
#include
namespace shark {
/**
* \brief Convex quadratic benchmark function.
*/
struct Discus : public SingleObjectiveFunction {
Discus(std::size_t numberOfVariables = 5,double alpha = 1.E-3) : m_alpha(alpha) {
m_features |= CAN_PROPOSE_STARTING_POINT;
m_features |= HAS_FIRST_DERIVATIVE;
m_numberOfVariables = numberOfVariables;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "Discus"; }
std::size_t numberOfVariables()const{
return m_numberOfVariables;
}
bool hasScalableDimensionality()const{
return true;
}
/// \brief Adjusts the number of variables if the function is scalable.
/// \param [in] numberOfVariables The new dimension.
void setNumberOfVariables( std::size_t numberOfVariables ){
m_numberOfVariables = numberOfVariables;
}
SearchPointType proposeStartingPoint() const {
RealVector x(numberOfVariables());
for (std::size_t i = 0; i < x.size(); i++) {
x(i) = random::uni(*mep_rng, 0,1);
}
return x;
}
double eval(SearchPointType const& p) const {
m_evaluationCounter++;
double sum = sqr(p(0));
for (std::size_t i = 1; i < p.size(); i++)
sum += m_alpha * sqr(p(i));
return sum;
}
double evalDerivative(SearchPointType const& p, FirstOrderDerivative & derivative ) const {
derivative.resize(p.size());
noalias(derivative) = (2 * m_alpha) * p;
derivative(0) = 2 * p(0);
return eval(p);
}
double alpha() const {
return m_alpha;
}
void setAlpha(double alpha) {
m_alpha = alpha;
}
private:
double m_alpha;
std::size_t m_numberOfVariables;
};
}
#endif