/*! * * * \brief Convex quadratic benchmark function. * * * \author - * \date 2010-2011 * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ #ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_DISCUS_H #define SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_DISCUS_H #include #include namespace shark { /** * \brief Convex quadratic benchmark function. */ struct Discus : public SingleObjectiveFunction { Discus(std::size_t numberOfVariables = 5,double alpha = 1.E-3) : m_alpha(alpha) { m_features |= CAN_PROPOSE_STARTING_POINT; m_features |= HAS_FIRST_DERIVATIVE; m_numberOfVariables = numberOfVariables; } /// \brief From INameable: return the class name. std::string name() const { return "Discus"; } std::size_t numberOfVariables()const{ return m_numberOfVariables; } bool hasScalableDimensionality()const{ return true; } /// \brief Adjusts the number of variables if the function is scalable. /// \param [in] numberOfVariables The new dimension. void setNumberOfVariables( std::size_t numberOfVariables ){ m_numberOfVariables = numberOfVariables; } SearchPointType proposeStartingPoint() const { RealVector x(numberOfVariables()); for (std::size_t i = 0; i < x.size(); i++) { x(i) = random::uni(*mep_rng, 0,1); } return x; } double eval(SearchPointType const& p) const { m_evaluationCounter++; double sum = sqr(p(0)); for (std::size_t i = 1; i < p.size(); i++) sum += m_alpha * sqr(p(i)); return sum; } double evalDerivative(SearchPointType const& p, FirstOrderDerivative & derivative ) const { derivative.resize(p.size()); noalias(derivative) = (2 * m_alpha) * p; derivative(0) = 2 * p(0); return eval(p); } double alpha() const { return m_alpha; } void setAlpha(double alpha) { m_alpha = alpha; } private: double m_alpha; std::size_t m_numberOfVariables; }; } #endif