//=========================================================================== /*! * * * \brief Multi-objective optimization benchmark function IHR 4. * * The function is described in * * Christian Igel, Nikolaus Hansen, and Stefan Roth. * Covariance Matrix Adaptation for Multi-objective Optimization. * Evolutionary Computation 15(1), pp. 1-28, 2007 * * * * \author - * \date - * * * \par Copyright 1995-2017 Shark Development Team * *

* This file is part of Shark. * * * Shark is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Shark is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Shark. If not, see . * */ //=========================================================================== #ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR4_H #define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR4_H #include #include #include namespace shark{ /*! \brief Multi-objective optimization benchmark function IHR 4. * * The function is described in * * Christian Igel, Nikolaus Hansen, and Stefan Roth. * Covariance Matrix Adaptation for Multi-objective Optimization. * Evolutionary Computation 15(1), pp. 1-28, 2007 */ struct IHR4 : public MultiObjectiveFunction { IHR4(std::size_t numVariables = 0) : m_handler(numVariables,-5,5){ announceConstraintHandler(&m_handler); } /// \brief From INameable: return the class name. std::string name() const { return "IHR4"; } std::size_t numberOfObjectives()const{ return 2; } std::size_t numberOfVariables()const{ return m_handler.dimensions(); } bool hasScalableDimensionality()const{ return true; } void setNumberOfVariables( std::size_t numberOfVariables ){ m_handler.setBounds( SearchPointType(numberOfVariables,-5), SearchPointType(numberOfVariables,5) ); } void init() { m_rotationMatrix = blas::randomRotationMatrix(*mep_rng,numberOfVariables()); m_ymax = 1.0/norm_inf(row(m_rotationMatrix,0)); } ResultType eval( const SearchPointType & x )const { m_evaluationCounter++; ResultType value( 2 ); SearchPointType y = prod(m_rotationMatrix,x); value[0] = std::abs( y( 0 ) ); double g = 0; for (unsigned i = 1; i < numberOfVariables(); i++) g += sqr( y( i ) ) - 10 * std::cos( 4 * M_PI * y( i ) ); g += 10 * (numberOfVariables() - 1.) + 1.; value[1] = g * hf(1. - std::sqrt( h( y( 0 )) / g ), y( 0 )); return value; } double h( double x )const { return 1 / ( 1 + std::exp( -x / std::sqrt( double(numberOfVariables()) ) ) ); } double hf(double x, double y0)const { if( std::abs(y0) <= m_ymax ) return x; return std::abs( y0 ) + 1.; } private: double m_ymax; BoxConstraintHandler m_handler; RealMatrix m_rotationMatrix; }; } #endif // IHR1_H