//===========================================================================
/*!
*
*
* \brief Base class for constraints.
*
*
* \author O.Krause
* \date 2013
*
*
* \par Copyright 1995-2017 Shark Development Team
*
*
* This file is part of Shark.
*
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see .
*
*/
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_BOXCONSTRAINTHANDLER_H
#define SHARK_OBJECTIVEFUNCTIONS_BOXCONSTRAINTHANDLER_H
#include
#include
namespace shark{
template
class BoxConstraintHandler:public AbstractConstraintHandler {
public:
BoxConstraintHandler(Vector const& lower, Vector const& upper)
:m_lower(lower),m_upper(upper){
SIZE_CHECK(lower.size() == upper.size());
typedef AbstractConstraintHandler base_type;
this->m_features |= base_type::CAN_PROVIDE_CLOSEST_FEASIBLE;
this->m_features |= base_type::IS_BOX_CONSTRAINED;
this->m_features |= base_type::CAN_GENERATE_RANDOM_POINT;
}
BoxConstraintHandler(std::size_t dim, double lower, double upper)
:m_lower(Vector(dim,lower)),m_upper(Vector(dim,upper)){
typedef AbstractConstraintHandler base_type;
this->m_features |= base_type::CAN_PROVIDE_CLOSEST_FEASIBLE;
this->m_features |= base_type::IS_BOX_CONSTRAINED;
this->m_features |= base_type::CAN_GENERATE_RANDOM_POINT;
}
BoxConstraintHandler(){
typedef AbstractConstraintHandler base_type;
this->m_features |= base_type::CAN_PROVIDE_CLOSEST_FEASIBLE;
this->m_features |= base_type::IS_BOX_CONSTRAINED;
this->m_features |= base_type::CAN_GENERATE_RANDOM_POINT;
}
std::size_t dimensions()const{
return m_lower.size();
}
bool isFeasible(Vector const& point)const{
SIZE_CHECK(point.size() == dimensions());
for(std::size_t i = 0; i != dimensions();++i){
if(point(i) + 1.e-13 < m_lower(i)||point(i) - 1.e-13 > m_upper(i))
return false;
}
return true;
}
void closestFeasible(Vector& point )const{
SIZE_CHECK(point.size() == dimensions());
for(std::size_t i = 0; i != dimensions();++i){
point(i) = std::max(point(i),m_lower(i));
point(i) = std::min(point(i),m_upper(i));
}
}
virtual void generateRandomPoint(random::rng_type& rng, Vector & startingPoint )const {
startingPoint.resize(dimensions());
for(std::size_t i = 0; i != dimensions(); ++i){
startingPoint(i) = random::uni(rng, m_lower(i),m_upper(i));
}
}
/// \brief Sets lower and upper bounds of the box.
void setBounds(Vector const& lower, Vector const& upper){
SIZE_CHECK(lower.size() == upper.size());
m_lower = lower;
m_upper = upper;
}
/// \brief Sets lower and upper bounds of the box.
void setBounds(std::size_t dimension, double lower, double upper){
m_lower = Vector(dimension,lower);
m_upper = Vector(dimension,upper);
}
/// \brief Returns the lower bound of the box.
Vector const& lower()const{
return m_lower;
}
/// \brief Returns the upper bound of the box.
Vector const& upper()const{
return m_upper;
}
private:
/// \brief Represents the lower bound of the points in the box
Vector m_lower;
/// \brief Represents the upper bound of the points in the box
Vector m_upper;
};
}
#endif